I hate open science

Now that I’ve got your attention: what I hate—and maybe dislike is a better term than hate—isn’t the open science community, or open science initiatives, or open science practices, or open scientists… it’s the term. I fundamentally dislike the term open science. For the last few years, I’ve deliberately tried to avoid using it. I don’t call myself an open scientist, I don’t advocate publicly for open science (per se), and when people use the term around me, I often make a point of asking them to clarify what they mean.

This isn’t just a personal idiosyncracy of mine in a chalk-on-chalkboard sense; I think at this point in time there are good reasons to think the continued use of the term is counterproductive, and we should try to avoid it in most contexts. Let me explain.

It’s ambiguous

At SIPS 2019 last week (SIPS is the Society for Improvement of Psychological Science), I had a brief chat with a British post-undergrad student who was interested in applying to graduate programs in the United States. He asked me what kind of open science community there was at my home institution (the University of Texas at Austin). When I started to reply, I realized that I actually had no idea what question the student was asking me, because I didn’t know his background well enough to provide the appropriate context. What exactly did he mean by “open science”? The term is now used so widely, and in so many different ways, that the student could plausibly have been asking me about any of the following things, either alone or in combination:

  • Reproducibility. Do people [at UT-Austin] value the ability to reproduce, computationally and/or experimentally, the scientific methods used to produce a given result? More concretely, do they conduct their analyses programmatically, rather than using GUIs? Do they practice formal version control? Are there opportunities to learn these kinds of computational skills?
  • Accessibility. Do people believe in making their scientific data, materials, results, papers, etc. publicly, freely, and easily available? Do they work hard to ensure that other scientists, funders, and the taxpaying public can easily get access to what scientists produce?
  • Incentive alignment. Are there people actively working to align individual incentives and communal incentives, so that what benefits an individual scientist also benefits the community at large? Do they pursue local policies meant to promote some of the other practices one might call part of “open science”?
  • Openness of opinion. Do people feel comfortable openly critiquing one another? Is there a culture of discussing (possibly trenchant) problems openly, without defensiveness? Do people take discussion on social media and post-publication review forums seriously?
  • Diversity. Do people value and encourage the participation in science of people from a wide variety of ethnicities, genders, skills, personalities, socioeconomic strata, etc.? Do they make efforts to welcome others into science, invest effort and resources to help them succeed, and accommodate their needs?
  • Metascience and informatics. Are people thinking about the nature of science itself, and reflecting on what it takes to promote a healthy and productive scientific enterprise? Are they developing systematic tools or procedures for better understanding the scientific process, or the work in specific scientific domains?

This is not meant to be a comprehensive list; I have no doubt there are other items one could add (e.g., transparency, collaborativeness, etc.). The point is that open science is, at this point, a very big tent. It contains people who harbor a lot of different values and engage in many different activities. While some of these values and activities may tend to co-occur within people who call themselves open scientists, many don’t. There is, for instance, no particular reason why someone interested in popularizing reproducible science methods should also be very interested in promoting diversity in science. I’m not saying there aren’t people who want to do both (of course there are); empirically, there might even be a modest positive correlation—I don’t know. But they clearly don’t have to go together, and plenty of people are far more invested in one than in the other.

Further, as in any other enterprise, if you monomaniacally push a single value hard enough, then at a certain point, tensions will arise even between values that would ordinarily co-exist peacefully if each given only partial priority. For example, if you think that doing reproducible science well requires a non-negotiable commitment to doing all your analyses programmatically, and maintaining all your code under public version control, then you’re implicitly condoning a certain reduction in diversity within science, because you insist on having only people with a certain set of skills take part in science, and people from some backgrounds are more likely than others (at least at present) to have those skills. Conversely, if diversity in science is the thing you value most, then you need to accept that you’re effectively downgrading the importance of many of the other values listed above in the research process, because any skill or ability you might use to select or promote people in science is necessarily going to reduce (in expectation) the role of other dimensions in the selection process.

This would be a fairly banal and inconsequential observation if we lived in a world where everyone who claimed membership in the open science community shared more or less the same values. But we clearly don’t. In highlighting the ambiguity of the term open science, I’m not just saying hey, just so you know, there are a lot of different activities people call open science; I’m saying that, at this point in time, there are a few fairly distinct sub-communities of people that all identify closely with the term open science and use it prominently to describe themselves or their work, but that actually have fairly different value systems and priorities.

Basically, we’re now at the point where, when someone says they’re an open scientist, it’s hard to know what they actually mean.

It wasn’t always this way; I think ten or even five years ago, if you described yourself as an open scientist, people would have identified you primarily with the movement to open up access to scientific resources and promote greater transparency in the research process. This is still roughly the first thing you find on the Wikipedia entry for Open Science:

Open science is the movement to make scientific research (including publications, data, physical samples, and software) and its dissemination accessible to all levels of an inquiring society, amateur or professional. Open science is transparent and accessible knowledge that is shared and developed through collaborative networks. It encompasses practices such as publishing open research, campaigning for open access, encouraging scientists to practice open notebook science, and generally making it easier to publish and communicate scientific knowledge.

That was a fine definition once upon a time, and it still works well for one part of the open science community. But as a general, context-free definition, I don’t think it flies any more. Open science is now much broader than the above suggests.

It’s bad politics

You might say, okay, but so what if open science is an ambiguous term; why can’t that be resolved by just having people ask for clarification? Well, obviously, to some degree it can. My response to the SIPS student was basically a long and winding one that involved a lot of conditioning on different definitions. That’s inefficient, but hopefully the student still got the information he wanted out of it, and I can live with a bit of inefficiency.

The bigger problem though, is that at this point in time, open science isn’t just a descriptive label for a set of activities scientists often engage in; for many people, it’s become an identity. And, whatever you think the value of open science is as an extensional label for a fairly heterogeneous set of activities, I think it makes for terrible identity politics.

There are two reasons for this. First, turning open science from a descriptive label into a full-blown identity risks turning off a lot of scientists who are either already engaged in what one might otherwise call “best practices”, or who are very receptive to learning such practices, but are more interested in getting their science done than in discussing the abstract merits of those practices or promoting their use to others. If you walk into a room and say, in the next three hours, I’m going to teach you version control, and there’s a good chance this could really help your research, probably quite a few people will be interested. If, on the other hand, you walk into the room and say, let me tell you how open science is going to revolutionize your research, and then proceed to either mention things that a sophisticated audience already knows, or blitz a naive audience with 20 different practices that you describe as all being part of open science, the reception is probably going to be frostier.

If your goal is to get people to implement good practices in their research—and I think that’s an excellent goal!—then it’s not so clear that much is gained by talking about open science as a movement, philosophy, culture, or even community (though I do think there are some advantages to the latter). It may be more effective to figure out who your audience is, what some of the low-hanging fruit are, and focus on those. Implying that there’s an all-or-none commitment—i.e., one is either an open scientist or not, and to be one, you have to buy into a whole bunch of practices and commitments—is often counterproductive.

The second problem with treating open science as a movement or identity is that the diversity of definitions and values I mentioned above almost inevitably leads to serious rifts within the broad open science community—i.e., between groups of people who would have little or no beef with one another if not for the mere fact that they all happen to identify as open scientists. If you spend any amount of time on social media following people whose biography includes the phrases “open science” or “open scientist”, you’ll probably know what I’m talking about. At a rough estimate, I’d guess that these days maybe 10 – 20% of tweets I see in my feed containing the words “open science” are part of some ongoing argument between people about what open science is, or who is and isn’t an open scientist, or what’s wrong with open science or open scientists—and not with substantive practices or applications at all.

I think it’s fair to say that most (though not all) of these arguments are, at root, about deep-seated differences in the kinds of values I mentioned earlier. People care about different things. Some people care deeply about making sure that studies can be accurately reproduced, and only secondarily or tertiarily about the diversity of the people producing those studies. Other people have the opposite priorities. Both groups of people (and there are of course many others) tend to think their particular value system properly captures what open science is (or should be) all about, and that the movement or community is being perverted or destroyed by some other group of people who, while perhaps well-intentioned (and sometimes even this modicum of charity is hard to find), just don’t have their heads screwed on quite straight.

This is not a new or special thing. Any time a large group of people with diverse values and interests find themselves all forced to sit under a single tent for a long period of time, divisions—and consequently, animosity—will eventually arise. If you’re forced to share limited resources or audience attention with a group of people who claim they fill the same role in society that you do, but who you disagree with on some important issues, odds are you’re going to experience conflict at some point.

Now, in some domains, these kinds of conflicts are truly unavoidable: the factors that introduce intra-group competition for resources, prestige, or attention are structural, and resolving them without ruining things for everyone is very difficult. In politics, for example, one’s nominal affiliation with a political party is legitimately kind of a big deal. In the United States, if a splinter group of disgruntled Republican politicians were to leave their party and start a “New Republican” party, they might achieve greater ideological purity and improve their internal social relations, but the new party’s members would also lose nearly all of their influence and power pretty much overnight. The same is, of course, true for disgruntled Democrats. The Nash equilibrium is, presently, for everyone to stay stuck in the same dysfunctional two-party system.

Open science, by contrast, doesn’t really have this problem. Or at least, it doesn’t have to have this problem. There’s an easy way out of the acrimony: people can just decide to deprecate vague, unhelpful terms like “open science” in favor of more informative and less controversial ones. I don’t think anything terrible is going to happen if someone who previously described themselves as an “open scientist” starts avoiding that term and instead opts to self-describe using more specific language. As I noted above, I speak from personal experience here (if you’re the kind of person who’s more swayed by personal anecdotes than by my ironclad, impregnable arguments). Five years ago, my talks and papers were liberally sprinkled with the term “open science”. For the last two or three years, I’ve largely avoided the term—and when I do use it, it’s often to make the same point I’m making here. E.g.,:

For the most part, I think I’ve succeeded in eliminating open science from my discourse in favor of more specific terms like reproducibility, transparency, diversity, etc. Which term I use depends on the context. I haven’t, so far, found myself missing the term “open”, and I don’t think I’ve lost brownie points in any club for not using it more often. I do, on the other hand, feel very confident that (a) I’ve managed to waste fewer people’s time by having to follow up vague initial statements about “open” things with more detailed clarifications, and (b) I get sucked into way fewer pointless Twitter arguments about what open science is really about (though admittedly the number is still not quite zero).

The prescription

So here’s my simple prescription for people who either identify as open scientists, or use the term on a regular basis: Every time you want to use the term open science—in your biography, talk abstracts, papers, tweets, conversation, or whatever else—pause and ask yourself if there’s another term you could substitute that would decrease ambiguity and avoid triggering never-ending terminological arguments. I’m not saying that the answer will always be yes. If you’re confident that the people you’re talking to have the same definition of open science as you, or you really do believe that nobody should ever call themselves an open scientist unless they use git, then godspeed—open science away. But I suspect that for most uses, there won’t be any such problem. In most instances, “open science” can be seamlessly replaced with something like “reproducibility”, “transparency”, “data sharing”, “being welcoming”, and so on. It’s a low-effort move, and the main effect of making the switch is that other people will have a clearer understanding of what you mean, and may be less inclined to argue with you about it.

Postscript

Some folks on twitter were concerned that this post makes it sound as if I’m passing off prior work and ideas as my own (particularly as relates to the role of diversity in open science). So let me explicitly state here that I don’t think any of the ideas expressed in this post are original to me in any way. I’ve heard most (if not all) expressed many times by many people in many contexts, and this post just represents my effort to distill them into a clear summary of my views.

Yes, your research is very noble. No, that’s not a reason to flout copyright law.

Scientific research is cumulative; many elements of a typical research project would not and could not exist but for the efforts of many previous researchers. This goes not only for knowledge, but also for measurement. In much of the clinical world–and also in many areas of “basic” social and life science research–people routinely save themselves inordinate amounts of work by using behavioral or self-report measures developed and validated by other researchers.

Among many researchers who work in fields heavily dependent on self-report instruments (e.g., personality psychology), there appears to be a tacit belief that, once a measure is publicly available–either because it’s reported in full in a journal article, or because all of the items and instructions be found on the web–it’s fair game for use in subsequent research. There’s a time-honored ttradition of asking one’s colleagues if they happen to “have a copy” of the NEO-PI-3, or the Narcissistic Personality Inventory, or the Hamilton Depression Rating Scale. The fact that many such measures are technically published under restrictive copyright licenses, and are often listed for sale at rather exorbitant prices (e.g., you can buy 25 paper copies of the NEO-PI-3 from the publisher for $363 US), does not seem to deter researchers much. The general understanding seems to be that if a measure is publicly available, it’s okay to use it for research purposes. I don’t think most researchers have a well-thought out, internally consistent justification for this behavior; it seems to almost invariably be an article of tacit belief that nothing bad can or should happen to someone who uses a commercially available instrument for a purpose as noble as scientific research.

The trouble with tacit beliefs is that, like all beliefs, they can sometimes be wrong–only, because they’re tacit, they’re often not evaluated openly until things go horribly wrong. Exhibit A on the frontier of horrible wrongness is a recent news article in Science that reports on a rather disconcerting case where the author of a measure (the Eight-Item Morisky Medication Adherence Scale–which also provides a clue to its author’s name) has been demanding rather large sums of money (ranging from $2000 to $6500) from the authors of hundreds of published articles that have used the MMAS-8 without explicitly requesting permission. As the article notes, there appears to be a general agreement that Morisky is within his legal rights to demand such payment; what people seem to be objecting to is the amount Morisky is requesting, and the way he’s going about the process (i.e., with lawyers):

Morisky is well within his rights to seek payment for use of his copyrighted tool. U.S. law encourages academic scientists and their universities to protect and profit from their inventions, including those developed with public funds. But observers say Morisky’s vigorous enforcement and the size of his demands stand out. “It’s unusual that he is charging as much as he is,” says Kurt Geisinger, director of the Buros Center for Testing at the University of Nebraska in Lincoln, which evaluates many kinds of research-related tests. He and others note that many scientists routinely waive payments for such tools, as long as they are used for research.

It’s a nice article, and and I think it suggests two things fairly clearly. First, Morisky is probably not a very nice man. He seems to have no compunction charging resource-strapped researchers in third-world countries licensing fees that require them to take out loans from their home universities, and he would apparently rather see dozens of published articles retracted from the literature than suffer the indignity of having someone use his measure without going through the proper channels (and paying the corresponding fees).

Second, the normative practice in many areas of science that depend on the (re)use of measures developed by other people is to essentially flout copyright law, bury one’s head in the sand, and hope for the best.

I don’t know that anything can be done about the first observation–and even if something could be done, there will always be other Moriskys. I do, however, think that we could collectively do quite a few things to change the way scientists think about, and deal with, the re-use of self-report (and other kinds of) measures. Most of these amount to providing better guidance and training. In principle, this shouldn’t be hard to do; in most disciplines, scientists are trained in all manner of research method, statistical praxis, and scientific convention. Yet I know of no graduate program in my own discipline (psychology) that provides its students with even a cursory overview of intellectual property law. This despite the fact that many scientists’ chief assets–and the things they most closely identify their career achievements with–are their intellectual products.

This is, in my view, a serious training failure. More important, it’s an unnecessary failure, because there isn’t really very much that a social scientist needs to know about copyright law in order to dramatically reduce their odds of ending up a target of legal action. The goal is not to train PhDs who can moonlight as bad attorneys; it’s to prevent behavior that flagrantly exposes one to potential Moriskying (look! I coined a verb!). For that, a single 15-minute segment of a research methods class would likely suffice. While I’m sure someone better-informed and more lawyer-like than me could come up with a more accurate precis, here’s the gist of what I think one would want to cover:

  • Just because a measure is publicly available does not mean it’s in the public domain. It’s intuitive to suppose that any measure that can be found in a publicly accessible place (e.g., on the web) is, by default, okay for public use–meaning that, unless the author of a measure has indicated that they don’t want their measure to be used by others, it can be. In fact, the opposite is true. By default, the author of a newly produced work retains all usage and distribution rights to that work. The author can, if they are so inclined, immediately place that work in the public domain. Alternatively, they could stipulate that every time someone uses their measure, that user must, within 72 hours of use, immediately send the author 22 green jelly beans in an unmarked paper bag. You don’t like those terms of use? Fine: don’t use the measure.

Importantly, an author isn’t under any obligation to say anything at all about how they wish their work to be reproduced or used. This means that when a researcher uses a measure that lacks explicit licensing information, that researcher is assuming the risk of running afoul of the measure author’s desires, whether or not those desires have been made publicly known. The fact that the measure happens to be publicly available may be a mitigating factor (e.g., one could potentially claim fair use, though as far as I know there’s little precedent for this type of thing in the scientific domain), but that’s a matter for lawyers to hash out, and I think most of us scientists would rather avoid lawyer-hashing if we can help it.

This takes us directly to the next point…

  • Don’t use a measure unless you’ve read, and agree with, its licensing terms. Of course, in practice, very few scientific measures are currently released with an explicit license–which gives rise to an important corollary injunction: don’t use a measure that doesn’t come with a license.

The latter statement may seem unfair; after all, it’s clear enough that most measures developed by social scientist are missing licenses not because their authors are intentionally trying to capitalize on ambiguity, but simply because most authors are ignorant of the fact that the lack of a license creates a significant liability for potential users. Walking away from unlicensed measures would amount to giving up on huge swaths of potential research, which surely doesn’t seem like a good idea.

Fortunately, I’m not suggesting anything nearly this drastic. Because the lack of licensing is typically unintentional, often, a simple, friendly email to an author may be sufficient to magic an explicit license into existence. While I haven’t had occasion to try this yet for self-report measures, I’ve been on both ends of such requests on multiple occasions when dealing with open-source software. In virtually every case I’ve been involved in, the response to an inquiry along the lines of “hey, I’d like to use your software, but there’s no license information attached” has been to either add a license to the repository (for example…), or provide an explicit statement to the effect of “you’re welcome to use this for the use case you describe”. Of course, if a response is not forthcoming, that too is instructive, as it suggests that perhaps steering clear of the tool (or measure) in question might be a good idea.

Of course, taking licensing seriously requires one to abide by copyright law–which, like it or not, means that there may be cases where the responsible (and legal) thing to do is to just walk away from a measure, even if it seems perfect for your use case from a research standpoint. If you’re serious about taking copyright seriously, and, upon emailing the author to inquire about the terms of use, you’re informed that the terms of use involve paying $100 per participant, you can either put up the money, or use a different measure. Burying your head in the sand and using the measure anyway, without paying for it, is not a good look.

  • Attach a license to every reusable product you release into the wild. This follows directly from the previous point: if you want responsible, informed users to feel comfortable using your measure, you should tell them what they can and can’t do with it. If you’re so inclined, you can of course write your own custom license, which can involve dollar bills, jelly beans, or anything else your heart desires. But unless you feel a strong need to depart from existing practices, it’s generally a good idea to select one of the many pre-existing licenses out there, because most of them have the helpful property of having been written by lawyers, and lawyers are people who generally know how to formulate sentiments like “you must give me heap big credit” in somewhat more precise language.

There are a lot of practical recommendations out there about what license one should or shouldn’t choose; I won’t get into those here, except to say that in general, I’m a strong proponent of using permissive licenses (e.g., MIT or CC-BY), and also, that I agree with many people’s sentiment that placing restrictions on commercial use–while intuitively appealing to scientists who value public goods–is generally counterproductive. In any case, the real point here is not to push people to use any particular license, but just to think about it for a few minutes when releasing a measure. I mean, you’re probably going to spend tens or hundreds of hours thinking about the measure itself; the least you can do is make sure you tell people what they’re allowed to do with it.

I think covering just the above three points in the context of a graduate research methods class–or at the very least, in those methods classes slanted towards measure development or evaluation (e.g., psychometrics)–would go a long way towards changing scientific norms surrounding measure use.

Most importantly, perhaps, the point of learning a little bit about copyright law is not just to reduce one’s exposure to legal action. There are also large communal benefits. If academic researchers collectively decided to stop flouting copyright law when choosing research measures, the developers of measures would face a very different–and, from a societal standpoint, much more favorable–set of incentives. The present state of affairs–where an instrument’s author is able to legally charge well-meaning researchers exorbitant fees post-hoc for use of an 8-item scale–exists largely because researchers refuse to take copyright seriously, and insist on acting as if science, being such a noble and humanitarian enterprise, is somehow exempt from legal considerations that people in other fields have to constantly worry about. Perversely, the few researchers who do the right thing by offering to pay for the scales they use then end up incurring large costs, while the majority who use the measures without permission suffer no consequences (except on the rare occasions when someone like Morisky comes knocking on the door with a lawyer).

By contrast, in an academic world that cared more about copyright law, many widely-used measures that are currently released under ambiguous or restrictive licenses (or, most commonly, no license at all) would never have attained widespread use in the first place. If, say, Costa & McCrae’s NEO measures–used by thousands of researchers every year–had been developed in a world where academics had a standing norm of avoiding restrictively licensed measures, the most likely outcome is that the NEO would have changed to accommodate the norm, and not vice versa. The net result is that we would be living in a world where the vast majority of measures–just like the vast majority of open-source software–really would be free to use in every sense of the word, without risk of lawsuits, and with the ability to redistribute, reuse, and modify freely. That, I think, is a world we should want to live in. And while the ship may have already sailed when it comes to the most widely used existing measures, it’s a world we could still have going forward. We just have to commit to not using new measures unless they have a clear license–and be prepared to follow the terms of that license to the letter.

There is no “tone” problem in psychology

Much ink has been spilled in the last week or so over the so-called “tone” problem in psychology, and what to do about it. I speak here, of course, of the now infamous (and as-yet unpublished) APS Observer column by APS Past President Susan Fiske, in which she argues rather strenuously that psychology is in danger of falling prey to “mob rule” due to the proliferation of online criticism generated by “self-appointed destructo-critics” who “ignore ethical rules of conduct.”

Plenty of people have already weighed in on the topic (my favorite summary is Andrew Gelman’s take), and to be honest, I don’t really have (m)any new thoughts to offer. But since that’s never stopped me before, I will now proceed to throw those thoughts at you anyway, just for good measure.

Since I’m verbose but not inconsiderate, I’ll summarize my main points way up here, so you don’t have to read 6,500 more words just to decide that you disagree with me. Basically, I argue the following points:

  1. There is nothing wrong with the general tone of our discourse in psychology at the moment.
  2. Even if there was something wrong with the tone of our discourse, it would be deeply counterproductive to waste our time talking about it in vague general terms.
  3. Fear of having one’s scientific findings torn apart by others is not unusual or pathological; it’s actually a completely normal–and healthy–feeling for a scientist.
  4. Appeals to fairness are not worth taking seriously unless the argument is pitched at the level of the entire scientific community, rather than just the sub-community one happens to belong to.
  5. When other scientists do things we don’t like, it’s pointless and counterproductive to question their motives.

There, that’s about as much of being brief and to the point as I can handle. From here on out, it’s all adjective soup, mixed metaphor, and an occasional literary allusion*.

1. There is no tone problem

Much of the recent discussion over how psychologists should be talking to one another simply takes it for granted that there’s some deep problem with the tone of our scientific discourse. Personally, I don’t think there is (and on the off-chance we’re doing this by vote count, neither do Andrew Gelman, Chris Chambers, Sam Schwarzkopf, or NeuroAnaTody). At the very least, I haven’t seen any good evidence for it. As far as I can tell, all of the complaints about tone thus far have been based exclusively on either (a) a handful of rather over-the-top individual examples of bad behavior, or (b) vague but unsupported allegations that certain abusive practices are actually quite common. Neither of these constitutes a satisfactory argument, in my view. The former isn’t useful because anecdotes are just that. I imagine many people can easily bring to mind several instances of what seem like unwarranted attacks on social media. For example, perhaps you don’t like the way James Coyne sometimes calls out people he disagrees with:

Or maybe you don’t appreciate Dan Gilbert calling a large group of researchers with little in common except their efforts to replicate one or more studies as “shameless little bullies”:

I don’t doubt that statements like these can and do offend some people, and I think people who are offended should certainly feel free to publicly raise their concerns (ideally by directly responding to the authors of such remarks). Still, such cases are the exception, not the norm, and academic psychologists should appreciate better than most people the dangers of over-generalizing from individual cases. Nobody should labor under any misapprehension that it’s possible to have a field made up of thousands of researchers all going about their daily business without some small subset of people publicly being assholes to one another. Achieving zero instances of bad behavior cannot be a sane goal for our field (or any other field). When Dan Gilbert called replicators “second-stringers” and “shameless little bullies,” it did not follow that all social psychologists above the age of 45 are reactionary jackasses. For that matter, it didn’t even follow that Gilbert is a jerk. The correct attributions in such cases–until such time as our list of notable examples grows many times larger than it presently is–are that (a) reasonable people sometimes say unreasonable things they later regret, or (b) some people are just not reasonable, and are best ignored. There is no reason to invent a general tone problem where none exists.

The other main argument for the existence of a “tone” problem—and one that’s prominently on display in Fiske’s op-ed—is the gossipy everyone-knows-this-stuff-is-happening kind of argument. You could be excused for reading Fiske’s op-ed and coming away thinking that verbal abuse is a rampant problem in psychology. Consider just one paragraph (but the rest of it reads much the same):

Only what’s crashing are people. These unmoderated attacks create collateral damage to targets’ careers and well being, with no accountability for the bullies. Our colleagues at all career stages are leaving the field because of the sheer adversarial viciousness. I have heard from graduate students opting out of academia, assistant professors afraid to come up for tenure, mid-career people wondering how to protect their labs, and senior faculty retiring early, all because of methodological terrorism. I am not naming names because ad hominem smear tactics are already damaging our field. Instead, I am describing a dangerous minority trend that has an outsized impact and a chilling effect on scientific discourse.

I will be the first to admit that it sounds very ominous, all this talk of people crashing, unmoderated attacks with no accountability, and people leaving the field. But before you panic, you might want to consider an alternative paragraph that, at least from where I’m sitting, Fiske could just as easily have written:

Only what’s crashing are people. The proliferation of flashy, statistically incompetent findings creates collateral damage to targets’ careers and well being, with no accountability for the people who produce such dreck. Our colleagues at all career stages are leaving the field due to the sheer atrocity of its standards. I have heard from graduate students opting out of academia, assistant professors suffering from depression, mid-career people wondering how to sustain their research, and senior faculty retiring early, all because of their dismay at common methodological practices. I am not naming names because ad hominem smear tactics are already damaging our field. Instead, I am describing a dangerous trend that has an outsized impact and a chilling effect on scientific progress.

Or if you don’t like that one, maybe this one is more your speed:

Only what’s crashing are our students. These unmoderated attacks on students by their faculty advisors create collateral damage to our students, with no accountability for the bullies. Our students at all stages of graduate school are leaving the field because of the sheer adversarial viciousness. I have heard from graduate students who work 90-hour weeks, are afraid to have children at this stage of their careers, or have fled grad school, all out of fear of being terrorized by their advisors. I am not naming names because ad hominem smear tactics are already damaging our field. Instead, I am describing a dangerous trend that has an outsized impact and a chilling effect on scientific progress.

If you don’t like that one either, feel free to crib the general structure and play fill in the blank with your favorite issue. It could be low salaries, unreasonable publication expectations, or excessively high teaching loads; whatever you like. The formula is simple: first, you find a few people with (perfectly legitimate) concerns about some aspect of their professional environment; then you just have to (1) recount those stories in horrified tones, (2) leave out any mention of exactly how many people you’re talking about, (3) provide no concrete details that would allow anyone to see any other side to the story, and (4) not-so-subtly imply that all hell will break loose if this problem isn’t addressed some time real soon.

Note that what makes Fiske’s description unproductive and incendiary here is not that we have any reason to doubt the existence of the (anonymous) cases she alludes to. I have no doubt that Fiske does in fact hear regularly from students who have decided to leave academia because they feel unfairly targeted. But the thing is, it’s also an indisputable fact that many (in absolute terms) students leave academia because they have trouble getting along with their advisors, because they’re fed up with the low methodological standards in the field, or because they don’t like the long, unstructured hours that science requires.

The problem is not that Fiske is being untruthful; it’s that she’s short-circuiting the typical process of data- and reason-based argument by throwing lots of colorful anecdotes and emotional appeals at us. No indication is provided in her piece—or in my creative adaptations—as to whether the scenarios described are at all typical. How often, we should be asking ourselves, does it actually happen that people opt out of academia, or avoid seeking tenure, because of legitimate concerns about being unfairly criticized by their colleagues? How often do people leave the field because our standards are so terrible? Just how many psychology faculty are really such terrible advisors that their students regularly quit? If the answer to all of these questions is “extremely rarely”–or if there is reason to believe that in many cases, the story is not nearly as simple as the way Fiske is making it sound–then we don’t have systematic problems that deserves our collective attention; at worst, we have isolated cases of people behaving badly. Unfortunately, the latter is a malady that universally afflicts every large group or organization, and as far as I know, there is no known cure.

From where I’m sitting, there is no evidence of an epidemic of interpersonal cruelty in psychology. There has undeniably been a rapid increase in open, critical commentary online; but as Chris Chambers, Andrew Gelman, and others have noted, this is much better understood as a welcome democratization of scientific discourse that levels the playing field and devalues the role of (hard-earned) status than some kind of verbal war to the pain between rival psychological ideologies.

2. Three reasons why complaining about tone is a waste of time

Suppose you disagree with my argument above (which is totally cool—please let me know why in the comments below!) and insist that there clearly is a problem with the tone of our discourse. What then? Well, in that case, I would still respectfully suggest that if your plan for dealing with this problem is to complain about it in general terms, the way Fiske does—meaning, without ever pointing to specific examples or explaining exactly what you mean by “critiques of such personal ferocity” or “ad hominem smear tactics”—then you’re probably just wasting your time. Actually, it’s worse than that: not only are you wasting your own time, but you’re probably also going to end up pouring more fuel on the very fire you claim to be trying to put out (and indeed, this is exactly what Fiske’s op-ed seems to have accomplished).

I think there are at least three good reasons to believe that spending one’s time arguing over tone in abstract terms is a generally bad idea. Since I appear to have nothing but time, and you appear to still be reading this, I’ll discuss each of them in great gory detail.

The engine-on-fire view of science

First, unlike in many other domains of life, in science, the validity or truth value of a particular viewpoint is independent of the tone with which that viewpoint is being expressed. We can perhaps distinguish between two ways of thinking about what it means to do science. One approach is what we might call the negotiation model of science. On this model, when two people disagree over some substantive scientific issue, what they’re doing is trying to find a compromise position that’s palatable to both parties. If you say your finding is robust, and I say it’s totally p-hacked, then our goal is to iterate until we end up in a position that we both find acceptable. This doesn’t necessarily mean that the position we end up with must be an intermediate position (e.g., “okay, you only p-hacked a tiny bit”); it’s possible that I’ll end up entirely withdrawing my criticism, or that you’ll admit to grave error and retract your study. The point is just that the goal is, at least implicitly, to arrive at some consensual agreement between parties regarding our original disagreement.

If one views science through this kind of negotiation lens, concerns about tone make perfect sense. After all, in almost any other context when you find yourself negotiating with someone, it’s a generally bad idea to start calling them names or insulting their mother. If you’re hawking your goods at a market, it’s probably safe to assume that every prospective buyer has other options–they can buy whatever it is they need from some other place, and they don’t have to negotiate specifically with you if they don’t like the way you talk to them. So you watch what you say. And if everyone manages to get along without hurling insults, it’s possible you might even successfully close a deal, and go home one rug lighter and a few Euros richer.

Unfortunately, the negotiation model isn’t a good way to think about science, because in science, the validity of one’s views does not change in any way depending on whether one is dispositionally friendly, or perpetually acts like a raging asshole. A better way to think about science is in terms of what we might call, with great nuance and sophistication, the “engine-on-fire” model. This model can be understood as follows. Suppose you get hungry while driving a long distance, and pull into a convenience store to buy some snacks. Just as you’re opening the door to the store, some guy yells out behind you, “hey, asshole, your engine’s on fire!” He then continues to stand around and berate you while you call for emergency services and frantically run around looking for a fire extinguisher–all without ever lifting a finger to help you.

Two points about this story should be obvious. First, the guy who alerted you to your burning engine is very likely a raging asshole. And second, the fact that he’s a raging asshole doesn’t absolve you in any way from taking steps to put out your flaming engine. It may absolve you from saying thank you to him after the fact, but his unpleasant demeanor unfortunately doesn’t mean you can just choose to look the other way out of spite, and calmly head inside to buy your teriyaki beef jerky as the flames outside engulf your vehicle.

For better or worse, scientific disagreements are more like the engine-on-fire scenario than the negotiation scenario. Superficially, it may seem that two people with a scientific disagreement are in a process of negotiation. But a crucial difference is that if one person inexplicably decides to start yelling at the other–even as they continue to toss out methodological or theoretical criticisms (“only a buffoon of a scientist could fail to model stimulus as a random factor in this design!”)–their criticisms don’t become any less true in virtue of their tone. This doesn’t mean that tone is irrelevant and should be ignored, of course; if a critic calls you names while criticizing your work, it’s perfectly reasonable for you to object to the tone they’re using, and ask that they avoid personal attacks. Unfortunately, you can’t compel them be nice to you, and the fact remains that if your critic decides to keep yelling at you, you still have a professional obligation to address the substance of their arguments, no matter how repellent you find their tone. If you don’t respond at all–either by explaining why the concern is invalid, or by adjusting your methodological procedures in some way–then there are now two scientific assholes in the world.

Distinguishing a bad case of the jerks from a bad case of the feels isn’t always easy

Much of the discussion over tone thus far has taken, as its starting point, people’s hurt feelings. Feelings deserve to be taken seriously; scientists are human beings, and the fact that the merit of a scientific argument is indepedendent of the tone used to convey it doesn’t mean we should run roughshod over people’s emotions. The important point to note, though, is that the opposite point also holds: the fact that someone might be upset by someone else’s conduct doesn’t automatically mean that the other party is under any obligation–or even expectation–to change their behavior. Sometimes people are upset for understandable reasons that nevertheless do not imply that anyone else did anything wrong.

Daniel Lakens recently pointed this problem out in a nice blog post. The fundamental point is that it’s often impossible for scientists to cleanly separate substantive intellectual issues from personal reputation and ego, because it’s simply a fact that one’s intellectual output is, to varying extents, a reflection of one’s abilities as a scientist. Meaning, if I consistently put out work that’s heavily criticized by other researchers, there is a point at which that criticism does in fact begin to impugn my general ability as a scientist–even if the criticism is completely legitimate, impersonal, and never strays from substantive discussion of the intellectual issues.

Examples of this aren’t hard to find in psychology. To take just one widely-cited example: among the best-replicated findings in behavioral genetics (and indeed, all of psychology) is the finding that most traits show high heritability (typically on the order of 50%) and little influence of shared environment (typically close to 0%). In other words, an enormous amount of evidence suggests that parents have minimal influence on how their children will eventually turn out, independently of the genes they pass on. Given such knowledge, the scientifically honest thing to do, it would seem, is to assume that most child-parent behavioral correlations are largely driven by heritable factors rather than by parenting. Nevertheless, a large fraction of the developmental literature consists of researchers conducting purely correlational studies and drawing strong conclusions about the causal influence of parenting on children’s behavior on the basis of observed child-parent correlations.

If you think I’m exaggerating, consider the latest issue of Psychological Science, where we find a report of a purely longitudinal study (no randomized experiment, and no behavioral genetic component) that claims to find evidence of “a positive link between more nurturing family environments in childhood and greater security of attachment to spouses more than 60 years later.” The findings, we’re told in the abstract, “…underscore the far-reaching influence of childhood environment on well-being in adulthood.” The fact that 50 years of behavioral genetics studies have conclusively demonstrated that all, or nearly all, of this purported parenting influence is actually accounted for by genetic factors does not seem to deter the authors. The terms “heritable” or “genetic” do not show up anywhere in the article, and no consideration at all is given to the possibility that the putative effect of warm parental environment is at least partly (and quite possibly wholly) spurious. And there are literally thousands of other papers just like this one in the developmental literature–many of them continually published in some of our most prestigious journals.

Now, an important question arises: how is a behavioral geneticist supposed to profesionally interact with a developmental scientist who appears to willfully ignore the demonstrably small influence of parenting, even after it is repeatedly pointed out to him? Is the geneticist supposed to simply smile and nod at the developmentalist and say, “that’s nice, you’re probably right about how important attachment styles are, because after all, you’re a nice person to talk to, and I want to keep inviting you to my dinner parties”? Or should she instead point out—repeatedly, if need be—the critical flaw in purely correlational designs that precludes any serious causal conclusions about parenting? And if she does the latter—always in a perfectly civil tone, mind you—how can that sentiment possibly be expressed in a way that both (a) is taken seriously enough by the target of criticism to effect a meaningful change in behavior, and (b) doesn’t seriously injure the target’s feelings?

This example highlights two important points, I think. First, when we’re being criticized, it can be very difficult to determine whether our critics are being unreasonable jerks, or are instead quite calmly saying things that we just don’t want to hear. As such, it’s a good idea to give our critics the benefit of the doubt, and assume they have fundamentally good intentions, even if our gut response is to retaliate as if they’re trying to cast our firstborn child into a giant lake of fire.

Second, unfortunate as it may be, being a nice person and being a good scientist are often in fundamental tension with one another–and virtually all scientists are frequently forced to choose which of the two they want to prioritize. I’m not saying you can’t be both a nice person and a good scientist on average. Of course you can. I’m just saying that there are a huge number of individual situations in which you can’t be both at the same time. If you ever find yourself at a talk given by one of the authors of the Psychological Science paper I mention above, you will have a choice between (a) saying nothing to the speaker during the question period (a “nice” action that hurts nobody’s feelings, but impedes scientific progress), and (b) pointing out that the chief conclusion expressed during the talk simply does not follow from any of the evidence presented (a “mean” action that will probably hurt the speaker’s feelings, but also serves to brings a critical scientific flaw to the attention of other scientists in the audience).

Now, one could potentially mount a reasonable argument in favor of being either a nice person, or a good scientist. I’m not going to argue that the appropriate thing to do is to always to put science ahead of people’s feelings. Sometimes there can be good reasons to privilege the latter. But I don’t think we should pretend that the tension between good science and good personal relationships doesn’t exist. My own view, for what it’s worth, is that people who want to do science for a living should accept that they are going to be regularly and frequently criticized, and that hurt feelings and wounded egos are part and parcel of being cognitively limited agents with deep emotions who spend their time trying to understand something incredibly difficult. This doesn’t mean that it’s okay to yell at people or call them idiots in public–it isn’t, and we should work hard collectively to prevent such behavior. But it does mean that at some point in one’s scientific career–and probably at many, many points–one may have the distinctly unpleasant experience of another scientist saying “I think the kind of work you do is fundamentally not capable of answering the questions you’re asking,” or, “there’s a critical flaw in your entire research program.” In such cases, it’s understandable if one’s feelings are hurt. But hurt feelings don’t in any way excuse one from engaging seriously with the content of the criticism. Listening to people tell us we’re wrong is part of the mantle we assume when we decide to become scientists; if we only want to talk to other people when they agree with us, there are plenty of other good ways we can spend our lives.

Who’s actually listening?

The last reason that complaining about the general tone of discourse seems inadvisable is that it’s not clear who’s actually listening. I mean, obviously plenty of people are watching the current controversy unfold in the hold on, let me get some popcorn sense. But the real question is, who do we think is going to read Fiske’s commentary, or any other commentary like it, and think, you know what–I see now that I’ve been a total jerk until now, and I’m going to stop? I suspect that if we were to catalogue all the cases that Fiske thinks of as instances of “ad hominem smear tactics” or “public shaming and blaming”, and then ask the perpetrators for their side of the story, we would probably get a very different take on things. I imagine that in the vast majority of cases, what people like Fiske see as behavior that’s completely beyond the pale would be seen by the alleged perpetrators as harsh but perfectly reasonable criticism–and apologies or promises to behave better in future would probably not flow very freely.

Note that I’m emphatically not suggesting that the actions in question are always defensible. I’m not passing any judgment on anyone’s behavior at all. I have no trouble believing that in some of the cases Fiske alludes to, there are probably legitimate and serious causes for concern. But the problem is, I see no reason to think that in cases where someone really is being an asshole, they’re likely to stop being an asshole just because Fiske wrote an op-ed complaining about tone in general terms. For example, I personally don’t think Andrew Gelman’s criticism of Cuddy, Norton, or Fiske has been at all inappropriate; but supposing you do think it’s inappropriate, do you really think Gelman is going to stop vigorously criticizing research he disagrees with just because Fiske wrote a column calling for civility?

We therefore find ourselves in a rather unfortunate situation: Fiske’s appeal is likely to elicit both heartfelt nods of approval from anyone who feels they’ve ever been personally attacked by a “methodological terrorist”, and shrieks of indignation and moral outrage from anyone who feels Fiske is mistaking their legitimate criticism for personal abuse. What it’s not likely to elicit much of is serious self-reflection or change in behavior—if for no other reason that it doesn’t describe any behavior in sufficient detail that anyone could actually think, “oh, yes, I see how that could be perceived as a personal attack.” In trying to avoid “damaging our field” by naming names, Fiske has, ironically, ended up writing a deeply divisive piece that appears to have only fanned the flames. I don’t think this is an accident; it seems to me like the inevitable fate of any general call for civility of this kind that fails to actually define or give examples of the behavior that is supposed to be so offensive.

The moral of the story is, if you’re going to complain about “critiques of such personal ferocity and relentless frequency that they resemble a denial-of-service attack” (and you absolutely should, if you think you have a legitimate case!), then you need to point to concrete behaviors that people can consider, evaluate, and learn from, and not just throw out vague allusions to “public shaming and blaming”, “ignoring ethical rules of conduct”, and “attacking the person and not the work”.

3. Fear of criticism is important—and healthy

Accusations of actual bullying are not the only concern raised by Fiske and other traditionalists. One of the other recurring themes that have come up in various commentaries on the tone of our current discourse is a fear of future criticism–and in particular, of being unfairly “targeted” for attack. In her column, Fiske writes that targets “often seem to be chosen for scientifically irrelevant reasons: their contrary opinions, professional prominence, or career-stage vulnerability.” On its face, this concern seems reasonable: surely it would be a bit unseemly for researchers to go running around gunning for each another purely to satisfy their petty personal vendettas. Science is supposed to be about the pursuit of truth, not vengeance!

Unfortunately, there is, so far as I can see, no possible way to enforce an injunction against pettiness or malicious intent. Nor should we want to try, because that would require a rather active form of thought policing. After all, who gets to decide what was in my head when I set out to replicate someone else’s study? Do we really want editors or reviewers passing judgment on whether an author’s motives for conducting a study were pure–and using that as a basis to discount the actual findings reported by the study? Does that really seem to Fiske like a good way to improve the tone of scientific discourse?

For better or worse, researchers do not–and cannot–have any right not to fear being “targeted” by other scientists–no matter what the motives in question may be. To the contrary, I would argue that a healthy fear of others’ (possibly motivated) negative evaluations is a largely beneficial influence on the quality of our science. Personally, I feel a not-insubstantial amount of fear almost any time I contemplate the way something I’ve written will be received by others (including these very words–as I’m writing them!). I frequently ask myself what I myself would say if I were reading a particular sentence or paragraph in someone else’s paper. And if the answer is “I would criticize it, for the following reasons…”, then I change or remove the offending statement(s) until I have no further criticisms. I have no doubt that it would do great things for my productivity if I allowed myself to publish papers as if they were only going to be read by friendly, well-intentioned colleagues. But then the quality of my papers would also decrease considerably. So instead, I try to write papers as if I expect them to be read by a death panel with a 90% kill quota. It admittedly makes writing less fun, but I also think it makes the end product much better. (The same principle also applies when seeking critical feedback on one’s work from others: if you only ever ask friendly, pleasant collaborators for their opinion on your papers, you shouldn’t be surprised if anonymous reviewers who have no reason to pull their punches later take a somewhat dimmer view.)

4. Fairness is in the eye of the beholder

Another common target of appeal in arguments about tone is fairness. We find fairness appeals implicitly in Fiske’s op-ed (presumably it’s a bad thing if some people switch careers because of fear of being bullied), and explicitly in a number of other commentaries. The most common appeal is to the negative career consequences of being (allegedly) unfairly criticized or bullied. The criticism doesn’t just impact on one’s scientific findings (goes the argument); it also makes it less likely that one will secure a tenure-track position, promotion, raise, or speaking invitations. Simone Schnall went so far as to suggest that the public criticism surrounding a well-publicized failure to replicate one of her studies made her feel like “a criminal suspect who has no right to a defense and there is no way to win.”

Now, I’m not going to try to pretend that Fiske, Schnall, and others are wrong about the general conclusion they draw. I see no reason to deny Schnall’s premise that her career has suffered as a result of the replication failure (though I would also argue that the bulk of that damage is likely attributable to the way she chose to respond to that replication failure, rather than to the actual finding itself). But the critical point here is, the fact that Schnall and others have suffered as a result of others’ replication failures and methodological criticisms is not in and of itself any kind of argument against those replication efforts and criticisms. No researcher has a right to lead a successful career untroubled and unencumbered by any serious questioning of their findings. Nor do early-career researchers like Alec Beall, whose paper suggesting that fertile women are more likely to wear red shirts was severely criticized by Andrew Gelman and others. It is lamentably true that incisive public criticism may injure the reputation and job prospects of those whose work has been criticized. And it’s also true that this can be quite unfair, in the sense that there is generally no particular reason why these particular people should be criticized and suffer for it, while other people with very similar bodies of work go unscathed, and secure plum jobs or promotions.

But here’s the thing: what doesn’t seem fair at the level of one individual is often perfectly fair–or at least, unavoidable–at the level of an entirely community. As soon as one zooms out from any one individual, and instead surveys the field of psychology as a whole, it becomes clear that the job and reputation markets are, to a first approximation, a zero-sum game. As Gelman and many other people have noted, for every person who doesn’t get a job because their paper was criticized by a “replicator”, there could be three other candidates who didn’t get jobs because their much more methodologically rigorous work took too long to publish and/or couldn’t stack up in flashiness to the PR-grabbing work that did win the job lottery. At an individual level, neither of these outcomes is “fair”. But then, very little in the world of professional success–in any field–is fair; almost every major professional outcome, good or bad, is influenced by an enormous amount of luck, and I would argue that it is delusional to pretend otherwise.

At root, I think the question we should ask ourselves, when something good or bad happens, is not: is it fair that I got treated [better|worse] than the way that other person over there was treated? Instead, it should be: does the distribution of individual outcomes we’re seeing align well with what maximizes the benefit to our community as a whole? Personally, I find it very difficult to see trenchant public criticism of work that one perceives as sub-par as a bad thing–even as I recognize that it may seem deeply unfair to the people whose work is the target of that criticism. The reason for this is that an obvious consequence of an increasing norm towards open, public criticism of people’s work is that the quality of our work will, collectively, improve. There should be no doubt that this shift will entail a redistribution of resources: the winners and losers under the new norm will be different from the winners and losers under the old norm. But that observation provides no basis for clinging to the old norm. Researchers who don’t like where things are currently headed cannot simply throw out complaints about being “unfairly targeted” by critics; instead, they need to articulate principled arguments for why a norm of open, public scientific criticism would be bad for science as a whole–and not just bad for them personally.

5. Everyone but me is biased!

The same logic that applies to complaints about being unfairly targeted also applies, I think, to complaints about critics’ nefarious motives or unconscious biases. To her credit, Fiske largely avoids imputing negative intent to her perceived adversaries–even as she calls them all kinds of fun names. Other commentators, however, have been less restrained–for example, suggesting that “there’s a lot of stuff going on where there’s now people making their careers out of trying to take down other people’s careers”, or that replicators “seem bent on disproving other researchers’ results by failing to replicate”. I find these kinds of statements uncompelling and, frankly, unseemly. The reason they’re unseemly is not that they’re wrong. Actually, they’re probably right. I don’t doubt that, despite what many reformers say, some of them are, at least some of the time, indeed motivated by personal grudges, a desire to bring down colleagues of whom they’re envious, and so on and so forth.

But the thing is, those motives are completely irrelevant to the evaluation of the studies and critiques that these people produce. The very obvious reason why the presence of bias on the part of a critic cannot be grounds to discount an study is that critics are not the only people with biases. Indeed, applying such a standard uniformly would mean that nobody’s finding should ever be taken seriously. Let’s consider just a few of the incentives that could lead a researcher conducting novel research, and who dreams of publishing their findings in the hallowed pages of, say, Psychological Science, to cut a few corners and end up producing some less-than-reliable findings:

  • Increased productivity: It’s less work to collect small convenience samples than large, representative ones.
  • More compelling results: Statistically significant results generated in small samples are typically more impressive-looking than one’s obtained from very large samples, due to sampling error and selection bias.
  • Simple stories: The more one probes a particular finding, the greater the likelihood that one will identify some problem that questions the validity of the results, or adds nuance and complexity to an otherwise simple story. And “mixed” findings are harder to publish.

All of these benefits, of course, feed directly into better prospects for fame, fortune, jobs, and promotions. So the idea that a finding published in one of our journals should be considered bias-free because it happened to come first, while a subsequent criticism or replication of that finding should be discounted because of personal motives or other biases is, frankly, delusional. Biases are everywhere; everyone has them. While this doesn’t mean that we should ignore them, it does mean that we should either (a) call all biases out equally–which is generally impossible, or at the very least extremely impractical–or (b) accept that doing so is not productive, and that the best way to eliminate bias over the long term is to pit everyone’s biases against each other and let logical argument and empirical data decide who’s right. Put differently, if you’re going to complain that Jane Doe is clearly motivated to destroy your cherished finding in order to make a name for herself, you should probably preface such an accusation with the admission that you obviously had plenty of motivation to cut corners when you produced the finding in the first place, since you knew it would help you make a name for yourself. Asymmetric appeals that require one to believe that bias exists in only one group of people simply don’t deserve to be taken seriously.

Personally, I would suggest that we adopt a standard policy of simply not talking about other people’s motivations or biases. If you can find evidence of someone’s bias in the methods they used or the analyses they conducted, then great–you can go ahead and point out the perceived flaws. That’s just being a good scientist. But if you can’t, then what was in your (perceived) adversary’s head when she produced her findings is quite irrelevant to scientific discourse–unless you think it would be okay for your critics to discount your work on the grounds that you clearly had all kinds of incentives to cheat.

Conclusions

Uh, no. No conclusions this time–this post is already long enough as is. And anyway, I already posted all of my conclusions way back at the beginning. So you can scroll all the way up there if you want to read them again. Instead, I’m going to try to improve your mood a tiny bit (if not the tone of the debate) by leaving you with this happy little painting automagically generated by Bot Ross:


* I lied! There were no literary allusions.

Neurosynth is joining the Elsevier family

[Editorial note: this was originally posted on April 1, 2016. April 1 is a day marked by a general lack of seriousness. Interpret this post accordingly.]

As many people who follow this blog will be aware, much of my research effort over the past few years has been dedicated to developing Neurosynth—a framework for large-scale, automated meta-analysis of neuroimaging data. Neurosynth has expanded steadily over time, with an ever-increasing database of studies, and a host of new features in the pipeline. I’m very grateful to NIMH for the funding that allows me to keep working on the project, and also to the hundreds (thousands?) of active Neurosynth users who keep finding novel applications for the data and tools we’re generating.

That said, I have to confess that, over the past year or so, I’ve gradually grown dissatisfied at my inability to scale up the Neurosynth operation in a way that would take the platform to the next level . My colleagues and I have come up with, and in some cases even prototyped, a number of really exciting ideas that we think would substantially advance the state of the art in neuroimaging. But we find ourselves spending an ever-increasing chunk of our time applying for the grants we need to support the work, and having little time left to over to actually do the work. Given the current funding climate and other logistical challenges (e.g., it’s hard to hire professional software developers on postdoc budgets), it’s become increasingly clear to me that the Neurosynth platform will be hard to sustain in an academic environment over the long term. So, for the past few months, I’ve been quietly exploring opportunities to help Neurosynth ladder up via collaborations with suitable industry partners.

Initially, my plan was simply to license the Neurosynth IP and use the proceeds to fund further development of Neurosynth out of my lab at UT-Austin. But as I started talking to folks in industry, I realized that there were opportunities available outside of academia that would allow me to take Neurosynth in directions that the academic environment would never allow. After a lot of negotiation, consultation, and soul-searching, I’m happy (though also a little sad) to announce that I’ll be leaving my position at the University of Texas at Austin later this year and assuming a new role as Senior Technical Fellow at Elsevier Open Science (EOS). EOS is a brand new division of Elsevier that seeks to amplify and improve scientific communication and evaluation by developing cutting-edge open science tools. The initial emphasis will be on the neurosciences, but other divisions are expected to come online in the next few years (and we’ll be hiring soon!). EOS will be building out a sizable insight-as-a-service operation that focuses on delivering real value to scientists—no p-hacking, no gimmicks, just actionable scientific information. The platforms we build will seek to replace flawed citation-based metrics with more accurate real-time measures that quantify how researchers actually use one another’s data, ideas, and tools—ultimately paving the way to a new suite of microneuroservices that reward researchers both professionally and financially for doing high-quality science.

On a personal level, I’m thrilled to be in a position to help launch an initiative like this. Having spent my entire career in an academic environment, I was initially a bit apprehensive at the thought of venturing into industry. But the move to Elsevier ended up feeling very natural. I’ve always seen Elsevier as a forward-thinking company at the cutting edge of scientific publishing, so I wasn’t shocked to hear about the EOS initiative. But as I’ve visited a number of Elsevier offices over the past few weeks (in the process of helping to decide where to locate EOS), I’ve been continually struck at how open and energetic—almost frenetic—the company is. It’s the kind of environment that combines many of the best elements of the tech world and academia, but without a lot of the administrative bureaucracy of the latter. At the end of the day, it was an opportunity I couldn’t pass up.

It will, of course, be a bittersweet transition for me; I’ve really enjoyed my 3 years in Austin, both professionally and personally. While I’m sure I’ll enjoy Norwich, CT (where EOS will be based), I’m going to really miss Austin. The good news is, I won’t be making the move alone! A big part of what sold me on Elsevier’s proposal was their commitment to developing an entire open science research operation; over the next five years, the goal is to make Elsevier the premier place to work for anyone interested in advancing open science. I’m delighted to say that Chris Gorgolewski (Stanford), Satrajit Ghosh (MIT), and Daniel Margulies (Max Planck Institute for Human Cognitive and Brain Sciences) have all also been recruited to Elsevier, and will be joining EOS at (or in Satra’s case, shortly after) launch. I expect that they’ll make their own announcements shortly, so I won’t steal their thunder much. But the short of it is that Chris, Satra, and I will be jointly spearheading the technical operation. Daniel will be working on other things, and is getting the fancy title of “Director of Interactive Neuroscience”; I think this means he’ll get to travel a lot and buy expensive pictures of brains to put on his office walls. So really, it’s a lot like his current job.

It goes without saying that Neurosynth isn’t making the jump to Elsevier all alone; NeuroVault—a whole-brain image repository developed by Chris—will also be joining the Elsevier family. We have some exciting plans in the works for much closer NeuroVault-Neurosynth integration, and we think the neuroimaging community is going to really like the products we develop. We’ll also be bringing with us the OpenfMRI platform created by Russ Poldrack. While Russ wasn’t interested in leaving Stanford (as I recall, his exact words were “over all of your dead bodies”), he did agree to release the OpenfMRI IP to Elsevier (and in return, Elsevier is endowing a permanent Open Science fellowship at Stanford). Russ will, of course, continue to actively collaborate on OpenfMRI, and all data currently in the OpenfMRI database will remain where it is (though all original contributors will be given the opportunity to withdraw their datasets if they choose). We also have some new Nipype-based tools rolling out over the coming months that will allow researchers to conduct state-of-the-art neuroimaging analyses in the cloud (for a small fee)–but I’ll have much more to say about that in a later post.

Naturally, a transition like this one can’t be completed without hitting a few speed bumps along the way. The most notable one is that the current version of Neurosynth will be retired permanently in mid-April (so grab any maps you need right now!). A new and much-improved version will be released in September, coinciding with the official launch of EOS. One of the things I’m most excited about is that the new version will support an “Enhanced Usage” tier. The vertical integration of Neurosynth with the rest of the Elsevier ecosystem will be a real game-changer; for example, authors submitting papers to NeuroImage will automatically be able to push their content into NeuroVault and Neurosynth upon acceptance, and readers will be able to instantly visualize and cognitively decode any activation map in the Elsevier system (for a nominal fee handled via an innovative new micropayment system). Users will, of course, retain full control over their content, ensuring that only readers who have the appropriate permissions (and a valid micropayment account of their own) can access other people’s data. We’re even drawing up plans to return a portion of the revenues earned through the system to the content creators (i.e., article authors)—meaning that for the first time, neuroimaging researchers will be able to easily monetize their research.

As you might expect, the Neurosynth brand will be undergoing some changes to reflect the new ownership. While Chris and I initially fought hard to preserve the names Neurosynth and NeuroVault, Elsevier ultimately convinced us that using a consistent name for all of our platforms would reduce confusion, improve branding, and make for a much more streamlined user experience*. There’s also a silver lining to the name we ended up with: Chris, Russ, and I have joked in the past that we should unite our various projects into a single “NeuroStuff” website—effectively the Voltron of neuroimaging tools—and I even went so far as to register neurostuff.org a while back. When we mentioned this to the Elsevier execs (intending it as a joke), we were surprised at their positive response! The end result (after a lot of discussion) is that Neurosynth, NeuroVault, and OpenfMRI will be merging into The NeuroStuff Collection, by Elsevier (or just NeuroStuff for short)–all coming in late 2016!

Admittedly, right now we don’t have a whole lot to show for all these plans, except for a nifty logo created by Daniel (and reluctantly approved by Elsevier—I think they might already be rethinking this whole enterprise). But we’ll be rolling out some amazing new services in the very near future. We also have some amazing collaborative projects that will be announced in the next few weeks, well ahead of the full launch. A particularly exciting one that I’m at liberty to mention** is that next year, EOS will be teaming up with Brian Nosek and folks at the Center for Open Science (COS) in Charlottesville to create a new preregistration publication stream. All successful preregistered projects uploaded to the COS’s flagship Open Science Framework (OSF) will be eligible, at the push of a button, for publication in EOS’s new online-only journal Preregistrations. Submission fees will be competitive with the very cheapest OA journals (think along the lines of PeerJ’s $99 lifetime subscription model).

It’s been a great ride working on Neurosynth for the past 5 years, and I hope you’ll all keep using (and contributing to) Neurosynth in its new incarnation as Elsevier NeuroStuff!

* Okay, there’s no point in denying it—there was also some money involved.

** See? Money can’t get in the way of open science—I can talk about whatever I want!

“Open Source, Open Science” Meeting Report – March 2015

[The report below was collectively authored by participants at the Open Source, Open Science meeting, and has been cross-posted in other places.]

On March 19th and 20th, the Center for Open Science hosted a small meeting in Charlottesville, VA, convened by COS and co-organized by Kaitlin Thaney (Mozilla Science Lab) and Titus Brown (UC Davis). People working across the open science ecosystem attended, including publishers, infrastructure non-profits, public policy experts, community builders, and academics.
Open Science has emerged into the mainstream, primarily due to concerted efforts from various individuals, institutions, and initiatives. This small, focused gathering brought together several of those community leaders. The purpose of the meeting was to define common goals, discuss common challenges, and coordinate on common efforts.

We had good discussions about several issues at the intersection of technology and social hacking including badging, improving standards for scientific APIs, and developing shared infrastructure. We also talked about coordination challenges due to the rapid growth of the open science community. At least three collaborative projects emerged from the meeting as concrete outcomes to combat the coordination challenges.

A repeated theme was how to make the value proposition of open science more explicit. Why should scientists become more open, and why should institutions and funders support open science? We agreed that incentives in science are misaligned with practices, and we identified particular pain points and opportunities to nudge incentives. We focused on providing information about the benefits of open science to researchers, funders, and administrators, and emphasized reasons aligned with each stakeholders’ interests. We also discussed industry interest in “open”, both in making good use of open data, and also in participating in the open ecosystem. One of the collaborative projects emerging from the meeting is a paper or papers to answer the question “Why go open?“ for researchers.

Many groups are providing training for tools, statistics, or workflows that could improve openness and reproducibility. We discussed methods of coordinating training activities, such as a training “decision tree” defining potential entry points and next steps for researchers. For example, Center for Open Science offers statistics consulting, rOpenSci offers training on tools, and Software Carpentry, Data Carpentry, and Mozilla Science Lab offer training on workflows. A federation of training services could be mutually reinforcing and bolster collective effectiveness, and facilitate sustainable funding models.

The challenge of supporting training efforts was linked to the larger challenge of funding the so-called “glue” – the technical infrastructure that is only noticed when it fails to function. One such collaboration is the SHARE project, a partnership between the Association of Research Libraries, its academic association partners, and the Center for Open Science. There is little glory in training and infrastructure, but both are essential elements for providing knowledge to enable change, and tools to enact change.

Another repeated theme was the “open science bubble”. Many participants felt that they were failing to reach people outside of the open science community. Training in data science and software development was recognized as one way to introduce people to open science. For example, data integration and techniques for reproducible computational analysis naturally connect to discussions of data availability and open source. Re-branding was also discussed as a solution – rather than “post preprints!”, say “get more citations!” Another important realization was that researchers who engage with open practices need not, and indeed may not want to, self-identify as “open scientists” per se. The identity and behavior need not be the same.

A number of concrete actions and collaborative activities emerged at the end, including a more coordinated effort around badging, collaboration on API connections between services and producing an article on best practices for scientific APIs, and the writing of an opinion paper outlining the value proposition of open science for researchers. While several proposals were advanced for “next meetings” such as hackathons, no decision has yet been reached. But, a more important decision was clear – the open science community is emerging, strong, and ready to work in concert to help the daily scientific practice live up to core scientific values.

Authors
[Authors are listed in reverse alphabetical order; order does not denote relative contribution.]

  1. Tal Yarkoni, University of Texas at Austin
  2. Kara Woo, NCEAS
  3. Andrew Updegrove, Gesmer Updegrove and ConsortiumInfo.org
  4. Kaitlin Thaney, Mozilla Science Lab
  5. Jeffrey Spies, Center for Open Science
  6. Courtney Soderberg, Center for Open Science
  7. Elliott Shore, Association of Research Libraries
  8. Andrew Sallans, Center for Open Science
  9. Karthik Ram, rOpenSci and Berkeley Institute for Data Science
  10. Min Ragan-Kelley, IPython and UC Berkeley
  11. Brian Nosek, Center for Open Science and University of Virginia
  12. Erin C, McKiernan, Wilfrid Laurier University
  13. Jennifer Lin, PLOS
  14. Amye Kenall, BioMed Central
  15. Mark Hahnel, figshare
  16. C. Titus Brown, UC Davis
  17. Sara D. Bowman, Center for Open Science