I hate open science

Now that I’ve got your attention: what I hate—and maybe dislike is a better term than hate—isn’t the open science community, or open science initiatives, or open science practices, or open scientists… it’s the term. I fundamentally dislike the term open science. For the last few years, I’ve deliberately tried to avoid using it. I don’t call myself an open scientist, I don’t advocate publicly for open science (per se), and when people use the term around me, I often make a point of asking them to clarify what they mean.

This isn’t just a personal idiosyncracy of mine in a chalk-on-chalkboard sense; I think at this point in time there are good reasons to think the continued use of the term is counterproductive, and we should try to avoid it in most contexts. Let me explain.

It’s ambiguous

At SIPS 2019 last week (SIPS is the Society for Improvement of Psychological Science), I had a brief chat with a British post-undergrad student who was interested in applying to graduate programs in the United States. He asked me what kind of open science community there was at my home institution (the University of Texas at Austin). When I started to reply, I realized that I actually had no idea what question the student was asking me, because I didn’t know his background well enough to provide the appropriate context. What exactly did he mean by “open science”? The term is now used so widely, and in so many different ways, that the student could plausibly have been asking me about any of the following things, either alone or in combination:

  • Reproducibility. Do people [at UT-Austin] value the ability to reproduce, computationally and/or experimentally, the scientific methods used to produce a given result? More concretely, do they conduct their analyses programmatically, rather than using GUIs? Do they practice formal version control? Are there opportunities to learn these kinds of computational skills?
  • Accessibility. Do people believe in making their scientific data, materials, results, papers, etc. publicly, freely, and easily available? Do they work hard to ensure that other scientists, funders, and the taxpaying public can easily get access to what scientists produce?
  • Incentive alignment. Are there people actively working to align individual incentives and communal incentives, so that what benefits an individual scientist also benefits the community at large? Do they pursue local policies meant to promote some of the other practices one might call part of “open science”?
  • Openness of opinion. Do people feel comfortable openly critiquing one another? Is there a culture of discussing (possibly trenchant) problems openly, without defensiveness? Do people take discussion on social media and post-publication review forums seriously?
  • Diversity. Do people value and encourage the participation in science of people from a wide variety of ethnicities, genders, skills, personalities, socioeconomic strata, etc.? Do they make efforts to welcome others into science, invest effort and resources to help them succeed, and accommodate their needs?
  • Metascience and informatics. Are people thinking about the nature of science itself, and reflecting on what it takes to promote a healthy and productive scientific enterprise? Are they developing systematic tools or procedures for better understanding the scientific process, or the work in specific scientific domains?

This is not meant to be a comprehensive list; I have no doubt there are other items one could add (e.g., transparency, collaborativeness, etc.). The point is that open science is, at this point, a very big tent. It contains people who harbor a lot of different values and engage in many different activities. While some of these values and activities may tend to co-occur within people who call themselves open scientists, many don’t. There is, for instance, no particular reason why someone interested in popularizing reproducible science methods should also be very interested in promoting diversity in science. I’m not saying there aren’t people who want to do both (of course there are); empirically, there might even be a modest positive correlation—I don’t know. But they clearly don’t have to go together, and plenty of people are far more invested in one than in the other.

Further, as in any other enterprise, if you monomaniacally push a single value hard enough, then at a certain point, tensions will arise even between values that would ordinarily co-exist peacefully if each given only partial priority. For example, if you think that doing reproducible science well requires a non-negotiable commitment to doing all your analyses programmatically, and maintaining all your code under public version control, then you’re implicitly condoning a certain reduction in diversity within science, because you insist on having only people with a certain set of skills take part in science, and people from some backgrounds are more likely than others (at least at present) to have those skills. Conversely, if diversity in science is the thing you value most, then you need to accept that you’re effectively downgrading the importance of many of the other values listed above in the research process, because any skill or ability you might use to select or promote people in science is necessarily going to reduce (in expectation) the role of other dimensions in the selection process.

This would be a fairly banal and inconsequential observation if we lived in a world where everyone who claimed membership in the open science community shared more or less the same values. But we clearly don’t. In highlighting the ambiguity of the term open science, I’m not just saying hey, just so you know, there are a lot of different activities people call open science; I’m saying that, at this point in time, there are a few fairly distinct sub-communities of people that all identify closely with the term open science and use it prominently to describe themselves or their work, but that actually have fairly different value systems and priorities.

Basically, we’re now at the point where, when someone says they’re an open scientist, it’s hard to know what they actually mean.

It wasn’t always this way; I think ten or even five years ago, if you described yourself as an open scientist, people would have identified you primarily with the movement to open up access to scientific resources and promote greater transparency in the research process. This is still roughly the first thing you find on the Wikipedia entry for Open Science:

Open science is the movement to make scientific research (including publications, data, physical samples, and software) and its dissemination accessible to all levels of an inquiring society, amateur or professional. Open science is transparent and accessible knowledge that is shared and developed through collaborative networks. It encompasses practices such as publishing open research, campaigning for open access, encouraging scientists to practice open notebook science, and generally making it easier to publish and communicate scientific knowledge.

That was a fine definition once upon a time, and it still works well for one part of the open science community. But as a general, context-free definition, I don’t think it flies any more. Open science is now much broader than the above suggests.

It’s bad politics

You might say, okay, but so what if open science is an ambiguous term; why can’t that be resolved by just having people ask for clarification? Well, obviously, to some degree it can. My response to the SIPS student was basically a long and winding one that involved a lot of conditioning on different definitions. That’s inefficient, but hopefully the student still got the information he wanted out of it, and I can live with a bit of inefficiency.

The bigger problem though, is that at this point in time, open science isn’t just a descriptive label for a set of activities scientists often engage in; for many people, it’s become an identity. And, whatever you think the value of open science is as an extensional label for a fairly heterogeneous set of activities, I think it makes for terrible identity politics.

There are two reasons for this. First, turning open science from a descriptive label into a full-blown identity risks turning off a lot of scientists who are either already engaged in what one might otherwise call “best practices”, or who are very receptive to learning such practices, but are more interested in getting their science done than in discussing the abstract merits of those practices or promoting their use to others. If you walk into a room and say, in the next three hours, I’m going to teach you version control, and there’s a good chance this could really help your research, probably quite a few people will be interested. If, on the other hand, you walk into the room and say, let me tell you how open science is going to revolutionize your research, and then proceed to either mention things that a sophisticated audience already knows, or blitz a naive audience with 20 different practices that you describe as all being part of open science, the reception is probably going to be frostier.

If your goal is to get people to implement good practices in their research—and I think that’s an excellent goal!—then it’s not so clear that much is gained by talking about open science as a movement, philosophy, culture, or even community (though I do think there are some advantages to the latter). It may be more effective to figure out who your audience is, what some of the low-hanging fruit are, and focus on those. Implying that there’s an all-or-none commitment—i.e., one is either an open scientist or not, and to be one, you have to buy into a whole bunch of practices and commitments—is often counterproductive.

The second problem with treating open science as a movement or identity is that the diversity of definitions and values I mentioned above almost inevitably leads to serious rifts within the broad open science community—i.e., between groups of people who would have little or no beef with one another if not for the mere fact that they all happen to identify as open scientists. If you spend any amount of time on social media following people whose biography includes the phrases “open science” or “open scientist”, you’ll probably know what I’m talking about. At a rough estimate, I’d guess that these days maybe 10 – 20% of tweets I see in my feed containing the words “open science” are part of some ongoing argument between people about what open science is, or who is and isn’t an open scientist, or what’s wrong with open science or open scientists—and not with substantive practices or applications at all.

I think it’s fair to say that most (though not all) of these arguments are, at root, about deep-seated differences in the kinds of values I mentioned earlier. People care about different things. Some people care deeply about making sure that studies can be accurately reproduced, and only secondarily or tertiarily about the diversity of the people producing those studies. Other people have the opposite priorities. Both groups of people (and there are of course many others) tend to think their particular value system properly captures what open science is (or should be) all about, and that the movement or community is being perverted or destroyed by some other group of people who, while perhaps well-intentioned (and sometimes even this modicum of charity is hard to find), just don’t have their heads screwed on quite straight.

This is not a new or special thing. Any time a large group of people with diverse values and interests find themselves all forced to sit under a single tent for a long period of time, divisions—and consequently, animosity—will eventually arise. If you’re forced to share limited resources or audience attention with a group of people who claim they fill the same role in society that you do, but who you disagree with on some important issues, odds are you’re going to experience conflict at some point.

Now, in some domains, these kinds of conflicts are truly unavoidable: the factors that introduce intra-group competition for resources, prestige, or attention are structural, and resolving them without ruining things for everyone is very difficult. In politics, for example, one’s nominal affiliation with a political party is legitimately kind of a big deal. In the United States, if a splinter group of disgruntled Republican politicians were to leave their party and start a “New Republican” party, they might achieve greater ideological purity and improve their internal social relations, but the new party’s members would also lose nearly all of their influence and power pretty much overnight. The same is, of course, true for disgruntled Democrats. The Nash equilibrium is, presently, for everyone to stay stuck in the same dysfunctional two-party system.

Open science, by contrast, doesn’t really have this problem. Or at least, it doesn’t have to have this problem. There’s an easy way out of the acrimony: people can just decide to deprecate vague, unhelpful terms like “open science” in favor of more informative and less controversial ones. I don’t think anything terrible is going to happen if someone who previously described themselves as an “open scientist” starts avoiding that term and instead opts to self-describe using more specific language. As I noted above, I speak from personal experience here (if you’re the kind of person who’s more swayed by personal anecdotes than by my ironclad, impregnable arguments). Five years ago, my talks and papers were liberally sprinkled with the term “open science”. For the last two or three years, I’ve largely avoided the term—and when I do use it, it’s often to make the same point I’m making here. E.g.,:

For the most part, I think I’ve succeeded in eliminating open science from my discourse in favor of more specific terms like reproducibility, transparency, diversity, etc. Which term I use depends on the context. I haven’t, so far, found myself missing the term “open”, and I don’t think I’ve lost brownie points in any club for not using it more often. I do, on the other hand, feel very confident that (a) I’ve managed to waste fewer people’s time by having to follow up vague initial statements about “open” things with more detailed clarifications, and (b) I get sucked into way fewer pointless Twitter arguments about what open science is really about (though admittedly the number is still not quite zero).

The prescription

So here’s my simple prescription for people who either identify as open scientists, or use the term on a regular basis: Every time you want to use the term open science—in your biography, talk abstracts, papers, tweets, conversation, or whatever else—pause and ask yourself if there’s another term you could substitute that would decrease ambiguity and avoid triggering never-ending terminological arguments. I’m not saying that the answer will always be yes. If you’re confident that the people you’re talking to have the same definition of open science as you, or you really do believe that nobody should ever call themselves an open scientist unless they use git, then godspeed—open science away. But I suspect that for most uses, there won’t be any such problem. In most instances, “open science” can be seamlessly replaced with something like “reproducibility”, “transparency”, “data sharing”, “being welcoming”, and so on. It’s a low-effort move, and the main effect of making the switch is that other people will have a clearer understanding of what you mean, and may be less inclined to argue with you about it.

Postscript

Some folks on twitter were concerned that this post makes it sound as if I’m passing off prior work and ideas as my own (particularly as relates to the role of diversity in open science). So let me explicitly state here that I don’t think any of the ideas expressed in this post are original to me in any way. I’ve heard most (if not all) expressed many times by many people in many contexts, and this post just represents my effort to distill them into a clear summary of my views.

Neurosynth is joining the Elsevier family

[Editorial note: this was originally posted on April 1, 2016. April 1 is a day marked by a general lack of seriousness. Interpret this post accordingly.]

As many people who follow this blog will be aware, much of my research effort over the past few years has been dedicated to developing Neurosynth—a framework for large-scale, automated meta-analysis of neuroimaging data. Neurosynth has expanded steadily over time, with an ever-increasing database of studies, and a host of new features in the pipeline. I’m very grateful to NIMH for the funding that allows me to keep working on the project, and also to the hundreds (thousands?) of active Neurosynth users who keep finding novel applications for the data and tools we’re generating.

That said, I have to confess that, over the past year or so, I’ve gradually grown dissatisfied at my inability to scale up the Neurosynth operation in a way that would take the platform to the next level . My colleagues and I have come up with, and in some cases even prototyped, a number of really exciting ideas that we think would substantially advance the state of the art in neuroimaging. But we find ourselves spending an ever-increasing chunk of our time applying for the grants we need to support the work, and having little time left to over to actually do the work. Given the current funding climate and other logistical challenges (e.g., it’s hard to hire professional software developers on postdoc budgets), it’s become increasingly clear to me that the Neurosynth platform will be hard to sustain in an academic environment over the long term. So, for the past few months, I’ve been quietly exploring opportunities to help Neurosynth ladder up via collaborations with suitable industry partners.

Initially, my plan was simply to license the Neurosynth IP and use the proceeds to fund further development of Neurosynth out of my lab at UT-Austin. But as I started talking to folks in industry, I realized that there were opportunities available outside of academia that would allow me to take Neurosynth in directions that the academic environment would never allow. After a lot of negotiation, consultation, and soul-searching, I’m happy (though also a little sad) to announce that I’ll be leaving my position at the University of Texas at Austin later this year and assuming a new role as Senior Technical Fellow at Elsevier Open Science (EOS). EOS is a brand new division of Elsevier that seeks to amplify and improve scientific communication and evaluation by developing cutting-edge open science tools. The initial emphasis will be on the neurosciences, but other divisions are expected to come online in the next few years (and we’ll be hiring soon!). EOS will be building out a sizable insight-as-a-service operation that focuses on delivering real value to scientists—no p-hacking, no gimmicks, just actionable scientific information. The platforms we build will seek to replace flawed citation-based metrics with more accurate real-time measures that quantify how researchers actually use one another’s data, ideas, and tools—ultimately paving the way to a new suite of microneuroservices that reward researchers both professionally and financially for doing high-quality science.

On a personal level, I’m thrilled to be in a position to help launch an initiative like this. Having spent my entire career in an academic environment, I was initially a bit apprehensive at the thought of venturing into industry. But the move to Elsevier ended up feeling very natural. I’ve always seen Elsevier as a forward-thinking company at the cutting edge of scientific publishing, so I wasn’t shocked to hear about the EOS initiative. But as I’ve visited a number of Elsevier offices over the past few weeks (in the process of helping to decide where to locate EOS), I’ve been continually struck at how open and energetic—almost frenetic—the company is. It’s the kind of environment that combines many of the best elements of the tech world and academia, but without a lot of the administrative bureaucracy of the latter. At the end of the day, it was an opportunity I couldn’t pass up.

It will, of course, be a bittersweet transition for me; I’ve really enjoyed my 3 years in Austin, both professionally and personally. While I’m sure I’ll enjoy Norwich, CT (where EOS will be based), I’m going to really miss Austin. The good news is, I won’t be making the move alone! A big part of what sold me on Elsevier’s proposal was their commitment to developing an entire open science research operation; over the next five years, the goal is to make Elsevier the premier place to work for anyone interested in advancing open science. I’m delighted to say that Chris Gorgolewski (Stanford), Satrajit Ghosh (MIT), and Daniel Margulies (Max Planck Institute for Human Cognitive and Brain Sciences) have all also been recruited to Elsevier, and will be joining EOS at (or in Satra’s case, shortly after) launch. I expect that they’ll make their own announcements shortly, so I won’t steal their thunder much. But the short of it is that Chris, Satra, and I will be jointly spearheading the technical operation. Daniel will be working on other things, and is getting the fancy title of “Director of Interactive Neuroscience”; I think this means he’ll get to travel a lot and buy expensive pictures of brains to put on his office walls. So really, it’s a lot like his current job.

It goes without saying that Neurosynth isn’t making the jump to Elsevier all alone; NeuroVault—a whole-brain image repository developed by Chris—will also be joining the Elsevier family. We have some exciting plans in the works for much closer NeuroVault-Neurosynth integration, and we think the neuroimaging community is going to really like the products we develop. We’ll also be bringing with us the OpenfMRI platform created by Russ Poldrack. While Russ wasn’t interested in leaving Stanford (as I recall, his exact words were “over all of your dead bodies”), he did agree to release the OpenfMRI IP to Elsevier (and in return, Elsevier is endowing a permanent Open Science fellowship at Stanford). Russ will, of course, continue to actively collaborate on OpenfMRI, and all data currently in the OpenfMRI database will remain where it is (though all original contributors will be given the opportunity to withdraw their datasets if they choose). We also have some new Nipype-based tools rolling out over the coming months that will allow researchers to conduct state-of-the-art neuroimaging analyses in the cloud (for a small fee)–but I’ll have much more to say about that in a later post.

Naturally, a transition like this one can’t be completed without hitting a few speed bumps along the way. The most notable one is that the current version of Neurosynth will be retired permanently in mid-April (so grab any maps you need right now!). A new and much-improved version will be released in September, coinciding with the official launch of EOS. One of the things I’m most excited about is that the new version will support an “Enhanced Usage” tier. The vertical integration of Neurosynth with the rest of the Elsevier ecosystem will be a real game-changer; for example, authors submitting papers to NeuroImage will automatically be able to push their content into NeuroVault and Neurosynth upon acceptance, and readers will be able to instantly visualize and cognitively decode any activation map in the Elsevier system (for a nominal fee handled via an innovative new micropayment system). Users will, of course, retain full control over their content, ensuring that only readers who have the appropriate permissions (and a valid micropayment account of their own) can access other people’s data. We’re even drawing up plans to return a portion of the revenues earned through the system to the content creators (i.e., article authors)—meaning that for the first time, neuroimaging researchers will be able to easily monetize their research.

As you might expect, the Neurosynth brand will be undergoing some changes to reflect the new ownership. While Chris and I initially fought hard to preserve the names Neurosynth and NeuroVault, Elsevier ultimately convinced us that using a consistent name for all of our platforms would reduce confusion, improve branding, and make for a much more streamlined user experience*. There’s also a silver lining to the name we ended up with: Chris, Russ, and I have joked in the past that we should unite our various projects into a single “NeuroStuff” website—effectively the Voltron of neuroimaging tools—and I even went so far as to register neurostuff.org a while back. When we mentioned this to the Elsevier execs (intending it as a joke), we were surprised at their positive response! The end result (after a lot of discussion) is that Neurosynth, NeuroVault, and OpenfMRI will be merging into The NeuroStuff Collection, by Elsevier (or just NeuroStuff for short)–all coming in late 2016!

Admittedly, right now we don’t have a whole lot to show for all these plans, except for a nifty logo created by Daniel (and reluctantly approved by Elsevier—I think they might already be rethinking this whole enterprise). But we’ll be rolling out some amazing new services in the very near future. We also have some amazing collaborative projects that will be announced in the next few weeks, well ahead of the full launch. A particularly exciting one that I’m at liberty to mention** is that next year, EOS will be teaming up with Brian Nosek and folks at the Center for Open Science (COS) in Charlottesville to create a new preregistration publication stream. All successful preregistered projects uploaded to the COS’s flagship Open Science Framework (OSF) will be eligible, at the push of a button, for publication in EOS’s new online-only journal Preregistrations. Submission fees will be competitive with the very cheapest OA journals (think along the lines of PeerJ’s $99 lifetime subscription model).

It’s been a great ride working on Neurosynth for the past 5 years, and I hope you’ll all keep using (and contributing to) Neurosynth in its new incarnation as Elsevier NeuroStuff!

* Okay, there’s no point in denying it—there was also some money involved.

** See? Money can’t get in the way of open science—I can talk about whatever I want!

“Open Source, Open Science” Meeting Report – March 2015

[The report below was collectively authored by participants at the Open Source, Open Science meeting, and has been cross-posted in other places.]

On March 19th and 20th, the Center for Open Science hosted a small meeting in Charlottesville, VA, convened by COS and co-organized by Kaitlin Thaney (Mozilla Science Lab) and Titus Brown (UC Davis). People working across the open science ecosystem attended, including publishers, infrastructure non-profits, public policy experts, community builders, and academics.
Open Science has emerged into the mainstream, primarily due to concerted efforts from various individuals, institutions, and initiatives. This small, focused gathering brought together several of those community leaders. The purpose of the meeting was to define common goals, discuss common challenges, and coordinate on common efforts.

We had good discussions about several issues at the intersection of technology and social hacking including badging, improving standards for scientific APIs, and developing shared infrastructure. We also talked about coordination challenges due to the rapid growth of the open science community. At least three collaborative projects emerged from the meeting as concrete outcomes to combat the coordination challenges.

A repeated theme was how to make the value proposition of open science more explicit. Why should scientists become more open, and why should institutions and funders support open science? We agreed that incentives in science are misaligned with practices, and we identified particular pain points and opportunities to nudge incentives. We focused on providing information about the benefits of open science to researchers, funders, and administrators, and emphasized reasons aligned with each stakeholders’ interests. We also discussed industry interest in “open”, both in making good use of open data, and also in participating in the open ecosystem. One of the collaborative projects emerging from the meeting is a paper or papers to answer the question “Why go open?“ for researchers.

Many groups are providing training for tools, statistics, or workflows that could improve openness and reproducibility. We discussed methods of coordinating training activities, such as a training “decision tree” defining potential entry points and next steps for researchers. For example, Center for Open Science offers statistics consulting, rOpenSci offers training on tools, and Software Carpentry, Data Carpentry, and Mozilla Science Lab offer training on workflows. A federation of training services could be mutually reinforcing and bolster collective effectiveness, and facilitate sustainable funding models.

The challenge of supporting training efforts was linked to the larger challenge of funding the so-called “glue” – the technical infrastructure that is only noticed when it fails to function. One such collaboration is the SHARE project, a partnership between the Association of Research Libraries, its academic association partners, and the Center for Open Science. There is little glory in training and infrastructure, but both are essential elements for providing knowledge to enable change, and tools to enact change.

Another repeated theme was the “open science bubble”. Many participants felt that they were failing to reach people outside of the open science community. Training in data science and software development was recognized as one way to introduce people to open science. For example, data integration and techniques for reproducible computational analysis naturally connect to discussions of data availability and open source. Re-branding was also discussed as a solution – rather than “post preprints!”, say “get more citations!” Another important realization was that researchers who engage with open practices need not, and indeed may not want to, self-identify as “open scientists” per se. The identity and behavior need not be the same.

A number of concrete actions and collaborative activities emerged at the end, including a more coordinated effort around badging, collaboration on API connections between services and producing an article on best practices for scientific APIs, and the writing of an opinion paper outlining the value proposition of open science for researchers. While several proposals were advanced for “next meetings” such as hackathons, no decision has yet been reached. But, a more important decision was clear – the open science community is emerging, strong, and ready to work in concert to help the daily scientific practice live up to core scientific values.

Authors
[Authors are listed in reverse alphabetical order; order does not denote relative contribution.]

  1. Tal Yarkoni, University of Texas at Austin
  2. Kara Woo, NCEAS
  3. Andrew Updegrove, Gesmer Updegrove and ConsortiumInfo.org
  4. Kaitlin Thaney, Mozilla Science Lab
  5. Jeffrey Spies, Center for Open Science
  6. Courtney Soderberg, Center for Open Science
  7. Elliott Shore, Association of Research Libraries
  8. Andrew Sallans, Center for Open Science
  9. Karthik Ram, rOpenSci and Berkeley Institute for Data Science
  10. Min Ragan-Kelley, IPython and UC Berkeley
  11. Brian Nosek, Center for Open Science and University of Virginia
  12. Erin C, McKiernan, Wilfrid Laurier University
  13. Jennifer Lin, PLOS
  14. Amye Kenall, BioMed Central
  15. Mark Hahnel, figshare
  16. C. Titus Brown, UC Davis
  17. Sara D. Bowman, Center for Open Science

strong opinions about data sharing mandates–mine included

Apparently, many scientists have rather strong feelings about data sharing mandates. In the wake of PLOS’s recent announcement–which says that, effective now, all papers published in PLOS journals must deposit their data in a publicly accessible location–a veritable gaggle of scientists have taken to their blogs to voice their outrage and/or support for the policy. The nays have posts like DrugMonkey’s complaint that the inmates are running the asylum at PLOS (more choice posts are here, here, here, and here); the yays have Edmund Hart telling the nays to get over themselves and share their data (more posts here, here, and here). While I’m a bit late to the party (mostly because I’ve been traveling and otherwise indisposed), I guess I’ll go ahead and throw my hat into the ring in support of data sharing mandates. For a number of reasons outlined below, I think time will show the anti-PLOS folks to very clearly be on the wrong side of this issue.

Mandatory public deposition is like, totally way better than a “share-upon-request” approach

You might think that proactive data deposition has little incremental utility over a philosophy of sharing one’s data upon request, since emails are these wordy little things that only take a few minutes of a data-seeker’s time to write. But it’s not just the time and effort that matter. It’s also the psychology and technology. Psychology, because if you don’t know the person on the other end, or if the data is potentially useful but not essential to you, or if you’re the agreeable sort who doesn’t like to bother other people, it’s very easy to just say, “nah, I’ll just go do something else”. Scientists are busy people. If a dataset is a click away, many people will be happy to download that dataset and play with it who wouldn’t feel comfortable emailing the author to ask for it. Technology, because data that isn’t publicly available is data that isn’t publicly indexed. It’s all well and good to say that if someone really wants a dataset, they can email you to ask for it, but if someone doesn’t know about your dataset in the first place–because it isn’t in the first three pages of Google results–they’re going to have a hard time asking.

People don’t actually share on request

Much of the criticism of the PLoS data sharing policy rests on the notion that the policy is unnecessary, because in practice most journals already mandate that authors must share their data upon request. One point that defenders of the PLOS mandate haven’t stressed enough is that such “soft” mandates are largely meaningless. Empirical studies have repeatedly demonstrated  that it’s actually very difficult  to get authors to share their data upon request —even when they’re obligated to do so by the contractual agreement they’ve signed with a publisher. And when researchers do fulfill data sharing requests, they often take inordinately long to do so, and the data often don’t line up properly with what was reported in the paper (as the PLOS editors noted in their explanation for introducing the policy), or reveal potentially serious errors.

Personally, I have to confess that I often haven’t fulfilled other researchers’ requests for my data–and in at least two cases, I never even responded to the request. These failures to share didn’t reflect my desire to hide anything; they occurred largely because I knew it would be a lot of work, and/or the data were no longer readily accessible to me, and/or I was too busy to take care of the request right when it came in. I think I’m sufficiently aware of my own character flaws to know that good intentions are no match for time pressure and divided attention–and that’s precisely why I’d rather submit my work to journals that force me to do the tedious curation work up front, when I have a strong incentive to do it, rather than later, when I don’t.

Comprehensive evaluation requires access to the data

It’s hard to escape the feeling that some of the push-back against the policy is actually rooted in the fear that other researchers will find mistakes in one’s work by going through one’s data. In some cases, this fear is made explicit. For example, DrugMonkey suggested that:

There will be efforts to say that the way lab X deals with their, e.g., fear conditioning trials, is not acceptable and they MUST do it the way lab Y does it. Keep in mind that this is never going to be single labs but rather clusters of lab methods traditions. So we’ll have PLoS inserting itself in the role of how experiments are to be conducted and interpreted!

This rather dire premonition prompted a commenter to ask if it’s possible that DM might ever be wrong about what his data means–necessitating other pairs of eyes and/or opinions. DM’s response was, in essence, “No.”. But clearly, this is wishful thinking: we have plenty of reasons to think that everyone in science–even the luminaries among us–make mistakes all the time. Science is hard. In the fields I’m most familiar with, I rarely read a paper that I don’t feel has some serious flaws–even though nearly all of these papers were written by people who have, in DM’s words, “been at this for a while”. By the same token, I’m certain that other people read each of my papers and feel exactly the same way. Of course, it’s not pleasant to confront our mistakes by putting everything out into the open, and I don’t doubt that one consequence of sharing data proactively is that error-finding will indeed become much more common. At least initially (i.e., until we develop an appreciation for the true rate of error in the average dataset, and become more tolerant of minor problems), this will probably cause everyone some discomfort. But temporary discomfort surely isn’t a good excuse to continue to support practices that clearly impede scientific progress.

Part of the problem, I suspect, is that scientists have collectively internalized as acceptable many practices that are on some level clearly not good for the community as a whole. To take just one example, it’s an open secret in biomedical science that so-called “representative figures” (of spiking neurons, Western blots, or whatever else you like) are rarely truly representative. Frequently, they’re actually among the best examples the authors of a paper were able to find. The communal wink-and-shake agreement to ignore this kind of problem is deeply problematic, in that it likely allows many claims to go unchallenged that are actually not strongly supported by the data. In a world where other researchers could easily go through my dataset and show that the “representative” raster plot I presented in Figure 2C was actually the best case rather than the norm, I would probably have to be more careful about making that kind of claim up front–and someone else might not waste a lot of their time chasing results that can’t possibly be as good as my figures make them look.

Figure 1.  A representative planet.

The Data are a part of the Methods

If you still don’t find this convincing, consider that one could easily have applied nearly all of the arguments people having been making in the blogosphere these past two weeks to that dastardly scientific timesink that is the common Methods sections. Imagine that we lived in a culture where scientists always reported their Results telegraphically–that is, with the brevity of a typical Nature or Science paper, but without the accompanying novel’s worth of Supplementary Methods. Then, when someone first suggested that it might perhaps be a good idea to introduce a separate section that describes in dry, technical language how authors actually produced all those exciting results, we would presumably see many people in the community saying something like the following:

Why should I bother to tell you in excruciating detail what software, reagents, and stimuli I used in my study? The vast majority of readers will never try to directly replicate my experiment, and those who do want to can just email me to get the information they need–which of course I’m always happy to provide in a timely and completely disinterested fashion. Asking me to proactively lay out every little methodological step I took is really unreasonable; it would take a very long time to write a clear “Methods” section of the kind you propose, and the benefits seem very dubious. I mean, the only thing that will happen if I adopt this new policy is that half of my competitors will start going through this new section with a fine-toothed comb in order to find problems, and the other half will now be able to scoop me by repeating the exact procedures I used before I have a chance to follow them up myself! And for what? Why do I need to tell everyone exactly what I did? I’m an expert with many years of experience in this field! I know what I’m doing, and I don’t appreciate your casting aspersions on my work and implying that my conclusions might not always be 100% sound!

As far as I can see, there isn’t any qualitative difference between reporting detailed Methods and providing comprehensive Data. In point of fact, many decisions about which methods one should use depend entirely on the nature of the data, so it’s often actually impossible to evaluate the methodological choices the authors made without seeing their data. If DrugMonkey et al think it’s crazy for one researcher to want access to another researcher’s data in order to determine whether the distribution of some variable looks normal, they should also think it’s crazy for researchers to have to report their reasoning for choosing a particular transformation in the first place. Or for using a particular reagent. Or animal strain. Or learning algorithm, or… you get the idea. But as Bjorn Brembs succinctly put it, in the digital age, this is silly: for all intents and purposes, there’s no longer any difference between text and data.

The data are funded by the taxpayers, and (in some sense) belong to the taxpayers

People vary widely in the extent to which they feel the public deserves to have access to the products of the work it funds. I don’t think I hold a particularly extreme position in this regard, in the sense that I don’t think the mere fact that someone’s effort is funded by the public automatically means any of their products should be publicly available for anyone’s perusal or use. However, when we’re talking about scientific data–where the explicit rationale for funding the work is to produce new generalizable knowledge, and where the marginal cost of replicating digital data is close to zero–I really don’t see any reason not to push very strongly to force scientists to share their data. I’m sympathetic to claims about scooping and credit assignment, but as a number of other folks have pointed out in comment threads, these are fundamentally arguments in favor of better credit assignment, and not arguments against sharing data. The fear some people have of being scooped is not sufficient justification for impeding our collective scientific progress.

It’s also worth noting that, in principle, PLOS’s new data sharing policy shouldn’t actually make it any easier for someone else to scoop you. Remember that under PLOS’s current data sharing mandate–as well as the equivalent policies at most other scientific journals–authors are already required to provide their data to anyone else upon request. Critics who argue that the new public archiving mandate opens the door to being scooped are in effect admitting that the old mandate to share upon request doesn’t work, because in theory there already shouldn’t really be anything preventing me from scooping you with your data simply by asking you for it (other than social norms–but then, the people who are actively out to usurp others’ ideas are the least likely to abide by those norms anyway). It’s striking to see how many of the posts defending the “share-upon-request” approach have no compunction in saying that they’re currently only willing to share their data after determining what the person on the other end wants to use it for–in clear violation of most journals’ existing policy.

It’s really not that hard

Organizing one’s data or code in a form minimally suitable for public consumption isn’t much fun. I do it fairly regularly; I know it sucks. It takes some time out of your day, and requires you to allocate resources to the problem that could otherwise be directed elsewhere. That said, a lot of the posts complaining about how much effort the new policy requires seem absurdly overwrought. There seems to be a widespread belief–which, as far as I can tell, isn’t supported by a careful reading of the actual PLOS policy–that there’s some incredibly strict standard that datasets have to live up to before pulic release. I don’t really understand where this concern comes from. Personally, I spend much of my time analyzing data other people have collected. I’ve worked with many other people’s data, and rarely is it in exactly the form I would like. Often times it’s not even in the ballpark of what I’d like. And I’ve had to invest a considerable amount of my time understanding what columns and rows mean, and scrounging for morsels of (poor) documentation. My working assumption when I do this–and, I think, most other people’s–is that the onus is on me to expend some effort figuring out what’s in a dataset I wish to use, and not on the author to release that dataset in a form that a completely naive person could understand without any effort. Of course it would be nice if everyone put their data up on the web in a form that maximized accessibility, but it certainly isn’t expected*. In asking authors to deposit their data publicly, PLOS isn’t asserting that there’s a specific format or standard that all data must meet; they’re just saying data must meet accepted norms. Since those norms depend on one’s field, it stands to reason that expectations will be lower for a 10-TB fMRI dataset than for an 800-row spreadsheet of behavioral data.

There are some valid concerns, but…

I don’t want to sound too Pollyannaish about all this. I’m not suggesting that the PLOS policy is perfect, or that issues won’t arise in the course of its implementation and enforcement. It’s very clear that there are some domains in which data sharing is a hassle, and I sympathize with the people who’ve pointed out that it’s not really clear what “all” the data means–is it the raw data, which aren’t likely to be very useful to anyone, or the post-processed data, which may be too close to the results reported in the paper? But such domain- or case-specific concerns are grossly outweighed by the very general observation that it’s often impossible to evaluate previous findings adequately, or to build a truly replicable science, if you don’t have access to other scientists’ data. There’s no doubt that edge cases will arise in the course of enforcing the new policy. But they’ll be dealt with on a case-by-case basis, exactly as the PLOS policy indicates. In the meantime, our default assumption should be that editors at PLOS–who are, after all, also working scientists–will behave reasonably, since they face many of the same considerations in their own research. When a researcher tells an editor that she doesn’t have anywhere to put the 50 TB of raw data for her imaging study, I expect that that editor will typically respond by saying, “fine, but surely you can drag and drop a directory full of the first- and second-level beta images, along with a basic description, into NeuroVault, right?”, and not “Whut!? No raw DICOM images, no publication!”

As for the people who worry that by sharing their data, they’ll be giving away a competitive advantage… to be honest, I think many of these folks are mistaken about the dire consequences that would ensue if they shared their data publicly. I suspect that many of the researchers in question would be pleasantly surprised at the benefits of data sharing (increased citation rates, new offers of collaboration, etc.) Still, it’s clear enough that some of the people who’ve done very well for themselves in the current scientific system–typically by leveraging some incredibly difficult-to-acquire dataset into a cottage industry of derivative studies–would indeed do much less well in a world where open data sharing was mandatory. What I fail to see, though, is why PLOS, or the scientific community as a whole, should care very much about this latter group’s concerns. As far as I can tell, PLOS’s new policy is a significant net positive for the scientific community as a whole, even if it hurts one segment of that community in the short term. For the moment, scientists who harbor proprietary attitudes towards their data can vote with their feet by submitting their papers somewhere other than PLOS. Contrary to the dire premonitions floating around, I very much doubt any potential drop in submissions is going to deliver a terminal blow to PLOS (and the upside is that the articles that do get published in PLOS will arguably be of higher quality). In the medium-to-long term, I suspect that cultural norms surrounding who gets credit for acquiring and sharing data vs. analyzing and reporting new findings based on those data are are going to undergo a sea change–to the point where in the not-too-distant future, the scoopophobia that currently drives many people to privately hoard their data is a complete non-factor. At that point, it’ll be seen as just plain common sense that if you want your scientific assertions to be taken seriously, you need to make the data used to support those assertions available for public scrutiny, re-analysis, and re-use.

 

* As a case in point, just yesterday I came across a publicly accessible dataset I really wanted to use, but that was in SPSS format. I don’t own a copy of SPSS, so I spent about an hour trying to get various third-party libraries to extract the data appropriately, without any luck. So eventually I sent the file to a colleague who was helpful enough to convert it. My first thought when I received the tab-delimited file in my mailbox this morning was not “ugh, I can’t believe they released the file in SPSS”, it was “how amazing is it that I can download this gigantic dataset acquired half the world away instantly, and with just one minor hiccup, be able to test a novel hypothesis in a high-powered way without needing to spend months of time collecting data?”

What we can and can’t learn from the Many Labs Replication Project

By now you will most likely have heard about the “Many Labs” Replication Project (MLRP)–a 36-site, 12-country, 6,344-subject effort to try to replicate a variety of classical and not-so-classical findings in psychology. You probably already know that the authors tested a variety of different effects–some recent, some not so recent (the oldest one dates back to 1941!); some well-replicated, others not so much–and reported successful replications of 10 out of 13 effects (though with widely varying effect sizes).

By and large, the reception of the MLRP paper has been overwhelmingly positive. Setting aside for the moment what the findings actually mean (see also Rolf Zwaan’s earlier take), my sense is that most psychologists are united in agreement that the mere fact that researchers at 36 different sites were able to get together and run a common protocol testing 13 different effects is a pretty big deal, and bodes well for the field in light of recent concerns about iffy results and questionable research practices.

But not everyone’s convinced. There now seems to be something of an incipient backlash against replication. Or perhaps not so much against replication itself as against the notion that the ongoing replication efforts have any special significance. An in press paper by Joseph Cesario makes a case for deferring independent efforts to replicate an effect until the original effect is theoretically well understood (a suggestion I disagree with quite strongly, and plan to follow up on in a separate post). And a number of people have questioned, in blog comments and tweets, what the big deal is. A case in point:

I think the charitable way to interpret this sentiment is that Gilbert and others are concerned that some people might read too much into the fact that the MLRP successfully replicated 10 out of 13 effects. And clearly, at least some journalists have; for instance, Science News rather irresponsibly reported that the MLRP “offers reassurance” to psychologists. That said, I don’t think it’s fair to characterize this as anything close to a dominant reaction, and I don’t think I’ve seen any researchers react to the MLRP findings as if the 10/13 number means anything special. The piece Dan Gilbert linked to in his tweet, far from promoting “hysteria” about replication, is a Nature News article by the inimitable Ed Yong, and is characteristically careful and balanced. Far from trumpeting the fact that 10 out of 13 findings replicated, here’s a direct quote from the article:

Project co-leader Brian Nosek, a psychologist at the Center of Open Science in Charlottesville, Virginia, finds the outcomes encouraging. “It demonstrates that there are important effects in our field that are replicable, and consistently so,“ he says. “But that doesn’t mean that 10 out of every 13 effects will replicate.“

Kahneman agrees. The study “appears to be extremely well done and entirely convincing“, he says, “although it is surely too early to draw extreme conclusions about entire fields of research from this single effort“.

Clearly, the mere fact that 10 out of 13 effects replicated is not in and of itself very interesting. For one thing (and as Ed Yong also noted in his article), a number of the effects were selected for inclusion in the project precisely because they had already been repeatedly replicated. Had the MLRP failed to replicate these effects–including, for instance, the seminal anchoring effect discovered by Kahneman and Tversky in the 1970s–the conclusion would likely have been that something was wrong with the methodology, and not that the anchoring effect doesn’t exist. So I think pretty much everyone can agree with Gilbert that we have most assuredly not learned, as a result of the MLRP, that there’s no replication crisis in psychology after all, and that roughly 76.9% of effects are replicable. Strictly speaking, all we know is that there are at least 10 effects in all of psychology that can be replicated. But that’s not exactly what one would call an earth-shaking revelation. What’s important to appreciate, however, is that the utility of the MLRP was never supposed to be about the number of successfully replicated effects. Rather, its value is tied to a number of other findings and demonstrations–some of which are very important, and have potentially big implications for the field at large. To wit:

1. The variance between effects is greater than the variance within effects.

Here’s the primary figure from the MLRP paper: Many Labs Replication Project results

Notice that the range of meta-analytic estimates for the different effect sizes (i.e., the solid green circles) is considerably larger than the range of individual estimates within a given effect. In other words, if you want to know how big a given estimate is likely to be, it’s more informative to know what effect is being studied than to know which of the 36 sites is doing the study. This may seem like a rather esoteric point, but it has important implications. Most notably, it speaks directly to the question of how much one should expect effect sizes to fluctuate from lab to lab when direct replications are attempted. If you’ve been following the controversy over the relative (non-)replicability of a number of high-profile social priming studies, you’ve probably noticed that a common defense researchers use when their findings fails to replicate is to claim that the underlying effect is very fragile, and can’t be expected to work in other researchers’ hands. What the MLRP shows, for a reasonable set of studies, is that there does not in fact appear to be a huge amount of site-to-site variability in effects. Take currency priming, for example–an effect in which priming participants with money supposedly leads them to express capitalistic beliefs and behaviors more strongly. Given a single failure to replicate the effect, one could plausibly argue that perhaps the effect was simply too fragile to reproduce consistently. But when 36 different sites all produce effects within a very narrow range–with a mean that is effectively zero–it becomes much harder to argue that the problem is that the effect is highly variable. To the contrary, the effect size estimates are remarkably consistent–it’s just that they’re consistently close to zero.

2. Larger effects show systematically greater variability.

You can see in the above figure that the larger an effect is, the more individual estimates appear to vary across sites. In one sense, this is not terribly surprising–you might already have the statistical intuition that the larger an effect is, the more reliable variance should be available to interact with other moderating variables. Conversely, if an effect is very small to begin with, it’s probably less likely that it could turn into a very large effect under certain circumstances–or that it might reverse direction entirely. But in another sense, this finding is actually quite unexpected, because, as noted above, there’s a general sense in the field that it’s the smaller effects that tend to be more fragile and heterogeneous. To the extent we can generalize from these 13 studies, these findings should give researchers some pause before attributing replication failures to invisible moderators that somehow manage to turn very robust effects (e.g., the original currency priming effect was nearly a full standard deviation in size) into nonexistent ones.

3. A number of seemingly important variables don’t systematically moderate effects.

There have long been expressions of concern over the potential impact of cultural and population differences on psychological effects. For instance, despite repeated demonstrations that internet samples typically provide data that are as good as conventional lab samples, many researchers continue to display a deep (and in my view, completely unwarranted) skepticism of findings obtained online. More reasonably, many researchers have worried that effects obtained using university students in Western nations–the so-called WEIRD samples–may not generalize to other social groups, cultures and countries. While the MLRP results are obviously not the last word on this debate, it’s instructive to note that factors like data acquisition approach (online vs. offline) and cultural background (US vs. non-US) didn’t appear to exert a systematic effect on results. This doesn’t mean that there are no culture-specific effects in psychology of course (there undoubtedly are), but simply that our default expectation should probably be that most basic effects will generalize across cultures to at least some extent.

4. Researchers have pretty good intuitions about which findings will replicate and which ones won’t.

At the risk of offending some researchers, I submit that the likelihood that a published finding will successfully replicate is correlated to some extent with (a) the field of study it falls under and (b) the journal in which it was originally published. For example, I don’t think it’s crazy to suggest that if one were to try to replicate all of the social priming studies and all of the vision studies published in Psychological Science in the last decade, the vision studies would replicate at a consistently higher rate. Anecdotal support for this intuition comes from a string of high-profile failures to replicate famous findings–e.g., John Bargh’s demonstration that priming participants with elderly concepts leads them to walk away from an experiment more slowly. However, the MLRP goes one better than anecdote, as it included a range of effects that clearly differ in their a priori plausibility. Fortuitously, just prior to publicly releasing the MLRP results, Brian Nosek asked the following question on Twitter:

Several researchers, including me, took Brian up on his offers; here are the responses:

As you can see, pretty much everyone that replied to Brian expressed skepticism about the two priming studies (#9 and #10 in Hal Pashler’s reply). There was less consensus on the third effect. (Actually, as it happens, there were actually ultimately only 2 failures to replicate–the third effect became statistically significant when samples were weighted properly.) Nonetheless, most of us picked Imagined Contact as number 3, which did in fact emerge as the smallest of the statistically significant effects. (It’s probably worth mentioning that I’d personally only heard of 4 or 5 of the 13 effects prior to reading their descriptions, so it’s not as though my response was based on a deep knowledge of prior work on these effects–I simply read the descriptions of the findings and gauged their plausibility accordingly.)

Admittedly, these are just two (or three) studies. It’s possible that the MLRP researchers just happened to pick two of the only high-profile priming studies that both seem highly counterintuitive and happen to be false positives. That said, I don’t really think these findings stand out from the mass of other counterintuitive priming studies in social psychology in any way. While we obviously shouldn’t conclude from this that no high-profile, counterintuitive priming studies will successfully replicate, the fact that a number of researchers were able to prospectively determine, with a high degree of accuracy, which effects would fail to replicate (and, among those that replicated, which were rather weak), is a pretty good sign that researchers’ intuitions about plausibility and replicability are pretty decent.

Personally, I’d love to see this principle pushed further, and formalized as a much broader tool for evaluating research findings. For example, one can imagine a website where researchers could publicly (and perhaps anonymously) register their degree of confidence in the likely replicability of any finding associated with a doi or PubMed ID. I think such a service would be hugely valuable–not only because it would help calibrate individual researchers’ intuitions and provide a sense of the field’s overall belief in an effect, but because it would provide a useful index of a finding’s importance in the event of successful replication (i.e., the authors of a well-replicated finding should probably receive more credit if the finding was initially viewed with great skepticism than if it was universally deemed rather obvious).

There are other potentially important findings in the MLRP paper that I haven’t mentioned here (see Rolf Zwaan’s blog post for additional points), but if nothing else, I hope this will help convince any remaining skeptics that this is indeed a landmark paper for psychology–even though the number of successful replications is itself largely meaningless.

Oh, there’s one last point worth mentioning, in light of the rather disagreeable tone of the debate surrounding previous replication efforts. If your findings are ever called into question by a multinational consortium of 36 research groups, this is exactly how you should respond:

Social psychologist Travis Carter of Colby College in Waterville, Maine, who led the original flag-priming study, says that he is disappointed but trusts Nosek’s team wholeheartedly, although he wants to review their data before commenting further. Behavioural scientist Eugene Caruso at the University of Chicago in Illinois, who led the original currency-priming study, says, “We should use this lack of replication to update our beliefs about the reliability and generalizability of this effect“, given the “vastly larger and more diverse sample“ of the MLRP. Both researchers praised the initiative.

Carter and Caruso’s attitude towards the MLRP is really exemplary; people make mistakes all the time when doing research, and shouldn’t be held responsible for the mere act of publishing incorrect findings (excepting cases of deliberate misconduct or clear negligence). What matters is, as Caruso notes, whether and to what extent one shows a willingness to update one’s beliefs in response to countervailing evidence. That’s one mark of a good scientist.

of postdocs and publishing models: two opportunities of (possible) interest

I don’t usually use this blog to advertise things (so please don’t send me requests to publicize your third cousin’s upcoming bar mitzvah), but I think these two opportunities are pretty cool. They also happen to be completely unrelated, but I’m too lazy to write two separate posts, so…

Opportunity 1: We’re hiring!

Well, not me personally, but a guy I know. My current postdoc advisor, Tor Wager, is looking to hire up to 4 postdocs in the next few months to work on various NIH-funded projects related to the neural substrates of pain and emotion. You would get to play with fun things like fMRI scanners, thermal stimulators, and machine learning techniques. Oh, and snow, because we’re located in Boulder, Colorado. So we have. A lot. Of snow.

Anyway, Tor is great to work with, the lab is full of amazing people and great resources, and Boulder is a fantastic place to live, so if you have (or expect to soon have) a PhD in affective/cognitive neuroscience or related field and a background in pain/emotion research and/or fMRI analysis and/or machine learning and/or psychophysiology, you should consider applying! See this flyer for more details. And no, I’m not being paid to say this.

Opportunity 2: Design the new science!

That’s a cryptic way of saying that there’s a forthcoming special issue of Frontiers in Computational Neuroscience that’s going to focus on “Visions for Open Evaluation of Scientific Papers by Post-Publication Peer Review.” As far as I can tell, that basically means that if you’re like every other scientist, and think there’s more to scientific evaluation than the number of publications and citations one has, you now have an opportunity to design a perfect evaluation system of your very own–meaning, of course, that system in which you end up at or near the very top.

In all seriousness though, this seems like a really great idea, and I think it’s the kind of thing that could actually have a very large impact on how we’re all doing–or at least communicating–science 10 or 20 years from now. The special issue will be edited by Niko Kriegeskorte, whose excellent ideas about scientific publishing I’ve previously blogged about, and Diana Deca. Send them your best ideas! And then, if it’s not too much trouble, put my name on your paper. You know, as a finder’s fee. Abstracts are due January 15th.