Tor Wager and I have a “news and views” piece in Nature Methods this week; we discuss a paper by Mantini and colleagues (in the same issue) introducing a new method for identifying functional brain homologies across different species–essentially, identifying brain regions in humans and monkeys that seem to do roughly the same thing even if they’re not located in the same place anatomically. Mantini et al make some fairly strong claims about what their approach tells us about the evolution of the human brain (namely, that some cortical regions have undergone expansion relative to monkeys, while others have adapted substantively new functions). For reasons we articulate in our commentary, I’m personally not so convinced by the substantive conclusions, but I do think the core idea underlying the method is a very clever and potentially useful one:
Their technique, interspecies activity correlation (ISAC), uses functional magnetic resonance imaging (fMRI) to identify brain regions in which humans and monkeys exposed to the same dynamic stimulus—a 30-minute clip from the movie The Good, the Bad and the Ugly—show correlated patterns of activity (Fig. 1). The premise is that homologous regions should have similar patterns of activity across species. For example, a brain region sensitive to a particular configuration of features, including visual motion, hands, faces, object and others, should show a similar time course of activity in both species—even if its anatomical location differs across species and even if the precise features that drive the area’s neurons have not yet been specified.
Mo Costandi has more on the paper in an excellent Guardian piece (and I’m not just saying that because he quoted me a few times). All in all, I think it’s a very exciting method, and it’ll be interesting to see how it’s applied in future studies. I think there’s a fairly broad class of potential applications based loosely around the same idea of searching for correlated patterns. It’s an idea that’s already been used by Uri Hasson (an author on the Mantini et al paper) and others fairly widely in the fMRI literature to identify functional correspondences across different subjects; but you can easily imagine conceptually similar applications in other fields too–e.g., correlating gene expression profiles across species in order to identify structural homologies (actually, one could probably try this out pretty easily using the mouse and human data available in the Allen Brain Atlas).
Mantini D, Hasson U, Betti V, Perrucci MG, Romani GL, Corbetta M, Orban GA, & Vanduffel W (2012). Interspecies activity correlations reveal functional correspondence between monkey and human brain areas. Nature methods PMID: 22306809
Wager, T., & Yarkoni, T. (2012). Establishing homology between monkey and human brains Nature Methods DOI: 10.1038/nmeth.1869