fMRI, not coming to a courtroom near you so soon after all

That’s a terribly constructed title, I know, but bear with me. A couple of weeks ago I blogged about a courtroom case in Tennessee where the defense was trying to introduce fMRI to the courtroom as a way of proving the defendant’s innocence (his brain, apparently, showed no signs of guilt). The judge’s verdict is now in, and…. fMRI is out. In United States v. Lorne Semrau, Judge Pham recommended that the government’s motion to exclude fMRI scans from consideration be granted. That’s the outcome I think most respectable cognitive neuroscientists were hoping for; as many people associated with the case or interviewed about it have noted (and as the judge recognized), there just isn’t a shred of evidence to suggest that fMRI has any utility as a lie detector in real-world situations.

The judge’s decision, which you can download in PDF form here (hat-tip: Thomas Nadelhoffer), is really quite elegant, and worth reading (or at least skimming through). He even manages some subtle snark in places. For instance (my italics):

Regarding the existence and maintenance of standards, Dr. Laken testified as to the protocols and controlling standards that he uses for his own exams. Because the use of fMRI-based lie detection is still in its early stages of development, standards controlling the real-life application have not yet been established. Without such standards, a court cannot adequately evaluate the reliability of a particular lie detection examination. Cordoba, 194 F.3d at 1061. Assuming, arguendo, that the standards testified to by Dr. Laken could satisfy Daubert, it appears that Dr. Laken violated his own protocols when he re-scanned Dr. Semrau on the AIMS tests SIQs, after Dr. Semrau was found “deceptive“ on the first AIMS tests scan. None of the studies cited by Dr. Laken involved the subject taking a second exam after being found to have been deceptive on the first exam. His decision to conduct a third test begs the question whether a fourth scan would have revealed Dr. Semrau to be deceptive again.

The absence of real-life error rates, lack of controlling standards in the industry for real-life exams, and Dr. Laken’s apparent deviation from his own protocols are negative factors in the analysis of whether fMRI-based lie detection is scientifically valid. See Bonds, 12 F.3d at 560.

The reference here is to the fact that Laken and his company scanned Semrau (the defendant) on three separate occasions. The first two scans were planned ahead of time, but the third apparently wasn’t:

From the first scan, which included SIQs relating to defrauding the government, the results showed that Dr. Semrau was “not deceptive.“ However, from the second scan, which included SIQs relating to AIMS tests, the results showed that Dr. Semrau was “being deceptive.“ According to Dr. Laken, “testing indicates that a positive test result in a person purporting to tell the truth is accurate only 6% of the time.“ Dr. Laken also believed that the second scan may have been affected by Dr. Semrau’s fatigue. Based on his findings on the second test, Dr. Laken suggested that Dr. Semrau be administered another fMRI test on the AIMS tests topic, but this time with shorter questions and conducted later in the day to reduce the effects of fatigue. … The third scan was conducted on January 12, 2010 at around 7:00 p.m., and according to Dr. Laken, Dr. Semrau tolerated it well and did not express any fatigue. Dr. Laken reviewed this data on January 18, 2010, and concluded that Dr. Semrau was not deceptive. He further stated that based on his prior studies, “a finding such as this is 100% accurate in determining truthfulness from a truthful person.“

I may very well be misunderstanding something here (and so might the judge), but if the positive predictive value of the test is only 6%, I’m guessing that the probability that the test is seriously miscalibrated is somewhat higher than 6%. Especially since the base rate for lying among people who are accused of committing serious fraud is probably reasonably high (this matters, because when base rates are very low, low positive predictive values are not unexpected). But then, no one really knows how to calibrate these tests properly, because the data you’d need to do that simply don’t exist. Serious validation of fMRI as a tool for lie detection would require assembling a large set of brain scans from defendants accused of various crimes (real crimes, not simulated ones) and using that data to predict whether those defendants were ultimately found guilty or not. There really isn’t any substitute for doing a serious study of that sort, but as far as I know, no one’s done it yet. Fortunately, the few judges who’ve had to rule on the courtroom use of fMRI seem to recognize that.

Regarding the existence and maintenance of standards, Dr. Laken testified as to the protocols and controlling standards that he uses for his own exams. Because the use of fMRI-based lie detection is still in its early stages of development, standards controlling the real-life application have not yet been established. Without such standards, a court cannot adequately evaluate the reliability of a particular lie detection examination. Cordoba, 194 F.3d at 1061. Assuming, arguendo, that the standards testified to by Dr. Laken could satisfy Daubert, it appears that Dr. Laken violated his own protocols when he re-scanned Dr. Semrau on the AIMS tests SIQs, after Dr. Semrau was found “deceptive“ on the first AIMS tests scan. None of the studies cited by Dr. Laken involved the subject taking a second exam after being found to have been deceptive on the first exam. His decision to conduct a third test begs the question whether a fourth scan would have revealed Dr. Semrau to be deceptive again.
The absence of real-life error rates, lack of controlling standards in the industry for real-life exams, and Dr. Laken’s apparent deviation from his own protocols are negative factors in the analysis of whether fMRI-based lie detection is scientifically valid. See Bonds, 12 F.3d at 560

fMRI: coming soon to a courtroom near you?

Science magazine has a series of three (1, 2, 3) articles by Greg Miller over the past few days covering an interesting trial in Tennessee. The case itself seems like garden variety fraud, but the novel twist is that the defense is trying to introduce fMRI scans into the courtroom in order to establish the defendant’s innocent. As far as I can tell from Miller’s articles, the only scientists defending the use of fMRI as a lie detector are those employed by Cephos (the company that provides the scanning service); the other expert witnesses (including Marc Raichle!) seem pretty adamant that admitting fMRI scans as evidence would be a colossal mistake. Personally, I think there are several good reasons why it’d be a terrible, terrible, idea to let fMRI scans into the courtroom. In one way or another, they all boil down to the fact that just  isn’t any shred of evidence to support the use of fMRI as a lie detector in real-world (i.e, non-contrived) situations. Greg Miller has a quote from Martha Farah (who’s a spectator at the trial) that sums it up eloquently:

Farah sounds like she would have liked to chime in at this point about some things that weren’t getting enough attention. “No one asked me, but the thing we have not a drop of data on is [the situation] where people have their liberty at stake and have been living with a lie for a long time,” she says. She notes that the only published studies on fMRI lie detection involve people telling trivial lies with no threat of consequences. No peer-reviewed studies exist on real world situations like the case before the Tennessee court. Moreover, subjects in the published studies typically had their brains scanned within a few days of lying about a fake crime, whereas Semrau’s alleged crimes began nearly 10 years before he was scanned.

I’d go even further than this, and point out that even if there were studies that looked at ecologically valid lying, it’s unlikely that we’d be able to make any reasonable determination as to whether or not a particular individual was lying about a particular event. For one thing, most studies deal with group averages and not single-subject prediction; you might think that a highly statistically significant difference between two conditions (e.g., lying and not lying) necessarily implies a reasonable ability to make predictions at the single-subject level, but you’d be surprised. Prediction intervals for individual observations are typically extremely wide even when there’s a clear pattern at the group level. It’s just easier to make general statements about differences between conditions or groups than it is about what state a particular person is likely to be in given a certain set of conditions.

There is, admittedly, an emerging body of literature that uses pattern classification to make predictions about mental states at the level of individual subjects, and accuracy in these types of application can sometimes be quite high. But these studies invariably operate on relatively restrictive sets of stimuli within well-characterized domains (e.g., predicting which word out of a set of 60 subjects are looking at). This really isn’t “mind reading” in the sense that most people (including most judges and jurors) tend to think of it. And of course, even if you could make individual-level predictions reasonably accurately, it’s not clear that that’s good enough for the courtroom. As a scientist, I might be thrilled if I could predict which of 10 words you’re looking at with 80% accuracy (which, to be clear, is currently a pipe dream in the context of studies of ecologically valid lying). But as a lawyer, I’d probably be very skeptical of another lawyer who claimed my predictions vindicated their client. The fact that increased anterior cingulate activation tends to accompany lying on average isn’t a good reason to convict someone unless you can be reasonably certain that increased ACC activation accompanies lying for that person in that context when presented with that bit of information. At the moment, that’s a pretty hard sell.

As an aside, the thing I find perhaps most curious about the whole movement to use fMRI scanners as lie detectors is that there are very few studies that directly pit fMRI against more conventional lie detection techniques–namely, the polygraph. You can say what you like about the polygraph–and many people don’t think polygraph evidence should be admissible in court either–but at least it’s been around for a long time, and people know more or less what to expect from it. It’s easy to forget that it only makes sense to introduce fMRI scans (which are decidedly costly) as evidence if they do substantially better than polygraphs. Otherwise you’re just wasting a lot of money for a fancy brain image, and you could have gotten just as much information by simply measuring someone’s arousal level as you yell at them about that bloodstained Cadillac that was found parked in their driveway on the night of January 7th. But then, maybe that’s the whole point of trying to introduce fMRI to the courtroom; maybe lawyers know that the polygraph has a tainted reputation, and are hoping that fancy new brain scanning techniques that come with pretty pictures don’t carry the same baggage. I hope that’s not true, but I’ve learned to be cynical about these things.

At any rate, the Science articles are well worth a read, and since the judge hasn’t yet decided whether or not to allow fMRI or not, the next couple of weeks should be interesting…

[hat-tip: Thomas Nadelhoffer]

in defense of three of my favorite sayings

Seth Roberts takes issue with three popular maxims that (he argues) people use “to push away data that contradicts this or that approved view of the world”. He terms this preventive stupidity. I’m a frequent user of all three sayings, so I suppose that might make me preventively stupid; but I do feel like I have good reasons for using these sayings, and I confess to not really seeing Roberts’ point.

Here’s what Roberts has to say about the three sayings in question:

1. Absence of evidence is not evidence of absence. Øyhus explains why this is wrong. That such an Orwellian saying is popular in discussions of data suggests there are many ways we push away inconvenient data.

In my own experience, by far the biggest reason this saying is popular in discussions of data (and the primary reason I use it when reviewing papers) is that many people have a very strong tendency to interpret null results as an absence of any meaningful effect. That’s a very big problem, because the majority of studies in psychology tend to have relatively little power to detect small to moderate-sized effects. For instance, as I’ve discussed here, most whole-brain analyses in typical fMRI samples (of say, 15 – 20 subjects) have very little power to detect anything but massive effects. And yet people routinely interpret a failure to detect hypothesized effects as an indication that they must not exist at all. The simplest and most direct counter to this type of mistake is to note that one shouldn’t accept the null hypothesis unless one has very good reasons to think that power is very high and effect size estimates are consequently quite accurate. Which is just another way of saying that absence of evidence is not evidence of absence.

2. Correlation does not equal causation. In practice, this is used to mean that correlation is not evidence for causation. At UC Berkeley, a job candidate for a faculty position in psychology said this to me. I said, “Isn’t zero correlation evidence against causation?“ She looked puzzled.

Again, Roberts’ experience clearly differs from mine; I’ve far more often seen this saying used as a way of suggesting that a researcher may be drawing overly strong causal conclusions from the data, not as a way of simply dismissing a correlation outright. A good example of this is found in the developmental literature, where many researchers have observed strong correlations between parents’ behavior and their children’s subsequent behavior. It is, of course, quite plausible to suppose that parenting behavior exerts a direct causal influence on children’s behavior, so that the children of negligent or abusive parents are more likely to exhibit delinquent behavior and grow up to perpetuate the “cycle of violence”. But this line of reasoning is substantially weakened by behavioral genetic studies indicating that very little of the correlation between parents’ and children’s personalities is explained by shared environmental factors, and that the vast majority reflects heritable influences and/or unique environmental influences. Given such findings, it’s a perfectly appropriate rebuttal to much of the developmental literature to note that correlation doesn’t imply causation.

It’s also worth pointing out that the anecdote Roberts provides isn’t exactly a refutation of the maxim; it’s actually an affirmation of the consequent. The fact that an absence of any correlation could potentially be strong evidence against causation (under the right circumstances) doesn’t mean that the presence of a correlation is strong evidence for causation. It may or may not be, but that’s something to be weighed on a case-by-case basis. There certainly are plenty of cases where it’s perfectly appropriate (and even called for) to remind someone that correlation doesn’t imply causation.

3. The plural of anecdote is not data. How dare you try to learn from stories you are told or what you yourself observe!

I suspect this is something of a sore spot for Roberts, who’s been an avid proponent of self-experimentation and case studies. I imagine people often dismiss his work as mere anecdote rather than valuable data. Personally, I happen to think there’s tremendous value to self-experimentation (at least when done in as controlled a manner as possible), so I don’t doubt there are many cases where this saying is unfairly applied. That said, I think Roberts fails to appreciate that people who do his kind of research constitute a tiny fraction of the population. Most of the time, when someone says that “the plural of anecdote is not data,” they’re not talking to someone who does rigorous self-experimentation, but to people who, say, don’t believe they should give up smoking seeing as how their grandmother smoked till she was 88 and died in a bungee-jumping accident, or who are convinced that texting while driving is perfectly acceptable because they don’t personally know anyone who’s gotten in an accident. In such cases, it’s not only legitimate but arguably desirable to point out that personal anecdote is no substitute for hard data.

Orwell was right. People use these sayings — especially #1 and #3 — to push away data that contradicts this or that approved view of the world. Without any data at all, the world would be simpler: We would simply believe what authorities tell us. Data complicates things. These sayings help those who say them ignore data, thus restoring comforting certainty.

Maybe there should be a term (antiscientific method?) to describe the many ways people push away data. Or maybe preventive stupidity will do.

I’d like to be charitable here, since there very clearly are cases where Roberts’ point holds true: sometimes people do toss out these sayings as a way of not really contending with data they don’t like. But frankly, the general claim that these sayings are antiscientific and constitute an act of stupidity just seems silly. All three sayings are clearly applicable in a large number of situations; to deny that, you’d have to believe that (a) it’s always fine to accept the null hypothesis, (b) correlation is always a good indicator of a causal relationship, and (c) personal anecdotes are just as good as large, well-controlled studies. I take it that no one, including Roberts, really believes that. So then it becomes a matter of when to apply these sayings, and not whether or not to use them. After all, it’d be silly to think that the people who use these sayings are always on the side of darkness, and the people who wield null results, correlations, and anecdotes with reckless abandon are always on the side of light.

My own experience, for what it’s worth, is that the use of these sayings is justified far more often than not, and I don’t have any reservation applying them myself when I think they’re warranted (which is relatively often–particularly the first one). But I grant that that’s just my own personal experience talking, and no matter how many experiences I’ve had of people using these sayings appropriately, I’m well aware that the plural of anecdote…