in which I suffer a minor setback due to hyperbolic discounting

I wrote a paper with some collaborators that was officially published today in Nature Methods (though it’s been available online for a few weeks). I spent a year of my life on this (a YEAR! That’s like 30 years in opossum years!), so go read the abstract, just to humor me. It’s about large-scale automated synthesis of human functional neuroimaging data. In fact, it’s so about that that that’s the title of the paper*. There’s also a companion website over here, which you might enjoy playing with if you like brains.

I plan to write a long post about this paper at some point in the near future, but not today. What I will do today is tell you all about why I didn’t write anything about the paper much earlier (i.e., 4 weeks ago, when it appeared online), because you seem very concerned. You see, I had grand plans for writing a very detailed and wonderfully engaging multi-part series of blog posts about the paper, starting with the background and motivation for the project (that would have been Part 1), then explaining the methods we used (Part 2), then the results (III; let’s switch to Roman numerals for effect), then some of the implications (IV), then some potential applications and future directions (V), then some stuff that didn’t make it into the paper (VI), and then, finally, a behind-the-science account of how it really all went down (VII; complete with filmed interviews with collaborators who left the project early due to creative differences). A seven-part blog post! All about one paper! It would have been longer than the article itself! And all the supplemental materials! Combined! Take my word for it, it would have been amazing.

Unfortunately, like most everyone else, I’m a much better person in the future than I am in the present; things that would take me a week of full-time work in the Now apparently take me only five to ten minutes when I plan them three months ahead of time. If you plotted my temporal discounting curve for intellectual effort, it would look like this:

So that’s why my seven-part series of blog posts didn’t debut at the same time the paper was published online a few weeks ago. In fact, it hasn’t debuted at all. At this point, my much more modest goal is just to write a single much shorter post, which will no longer be able to DEBUT, but can at least slink into the bar unnoticed while everyone else is out on the patio having a smoke. And really, I’m only doing it so I can look myself in the eye again when I look myself in the mirror. Because it turns out it’s very hard to shave your face safely if you’re not allowed to look yourself in the eye. And my labmates are starting to call me PapercutMan, which isn’t really a superpower worth having.

So yeah, I’ll write something about this paper soon. But just to play it safe, I’m not going to operationally define ‘soon’ right now.

 

* Three “that”s in a row! What are the odds! Good luck parsing that sentence!

Too much p = .048? Towards partial automation of scientific evaluation

Distinguishing good science from bad science isn’t an easy thing to do. One big problem is that what constitutes ‘good’ work is, to a large extent, subjective; I might love a paper you hate, or vice versa. Another problem is that science is a cumulative enterprise, and the value of each discovery is, in some sense, determined by how much of an impact that discovery has on subsequent work–something that often only becomes apparent years or even decades after the fact. So, to an uncomfortable extent, evaluating scientific work involves a good deal of guesswork and personal preference, which is probably why scientists tend to fall back on things like citation counts and journal impact factors as tools for assessing the quality of someone’s work. We know it’s not a great way to do things, but it’s not always clear how else we could do better.

Fortunately, there are many aspects of scientific research that don’t depend on subjective preferences or require us to suspend judgment for ten or fifteen years. In particular, methodological aspects of a paper can often be evaluated in a (relatively) objective way, and strengths or weaknesses of particular experimental designs are often readily discernible. For instance, in psychology, pretty much everyone agrees that large samples are generally better than small samples, reliable measures are better than unreliable measures, representative samples are better than WEIRD ones, and so on. The trouble when it comes to evaluating the methodological quality of most work isn’t so much that there’s rampant disagreement between reviewers (though it does happen), it’s that research articles are complicated products, and the odds of any individual reviewer having the expertise, motivation, and attention span to catch every major methodological concern in a paper are exceedingly small. Since only two or three people typically review a paper pre-publication, it’s not surprising that in many cases, whether or not a paper makes it through the review process depends as much on who happened to review it as on the paper itself.

A nice example of this is the Bem paper on ESP I discussed here a few weeks ago. I think most people would agree that things like data peeking, lumping and splitting studies, and post-hoc hypothesis testing–all of which are apparent in Bem’s paper–are generally not good research practices. And no doubt many potential reviewers would have noted these and other problems with Bem’s paper had they been asked to reviewer. But as it happens, the actual reviewers didn’t note those problems (or at least, not enough of them), so the paper was accepted for publication.

I’m not saying this to criticize Bem’s reviewers, who I’m sure all had a million other things to do besides pore over the minutiae of a paper on ESP (and for all we know, they could have already caught many other problems with the paper that were subsequently addressed before publication). The problem is a much more general one: the pre-publication peer review process in psychology, and many other areas of science, is pretty inefficient and unreliable, in the sense that it draws on the intense efforts of a very few, semi-randomly selected, individuals, as opposed to relying on a much broader evaluation by the community of researchers at large.

In the long term, the best solution to this problem may be to fundamentally rethink the way we evaluate scientific papers–e.g., by designing new platforms for post-publication review of papers (e.g., see this post for more on efforts towards that end). I think that’s far and away the most important thing the scientific community could do to improve the quality of scientific assessment, and I hope we ultimately will collectively move towards alternative models of review that look a lot more like the collaborative filtering systems found on, say, reddit or Stack Overflow than like peer review as we now know it. But that’s a process that’s likely to take a long time, and I don’t profess to have much of an idea as to how one would go about kickstarting it.

What I want to focus on here is something much less ambitious, but potentially still useful–namely, the possibility of automating the assessment of at least some aspects of research methodology. As I alluded to above, many of the factors that help us determine how believable a particular scientific finding is are readily quantifiable. In fact, in many cases, they’re already quantified for us. Sample sizes, p values, effect sizes,  coefficient alphas… all of these things are, in one sense or another, indices of the quality of a paper (however indirect), and are easy to capture and code. And many other things we care about can be captured with only slightly more work. For instance, if we want to know whether the authors of a paper corrected for multiple comparisons, we could search for strings like “multiple comparisons”, “uncorrected”, “Bonferroni”, and “FDR”, and probably come away with a pretty decent idea of what the authors did or didn’t do to correct for multiple comparisons. It might require a small dose of technical wizardry to do this kind of thing in a sensible and reasonably accurate way, but it’s clearly feasible–at least for some types of variables.

Once we extracted a bunch of data about the distribution of p values and sample sizes from many different papers, we could then start to do some interesting (and potentially useful) things, like generating automated metrics of research quality. For instance:

  • In multi-study articles, the variance in sample size across studies could tell us something useful about the likelihood that data peeking is going on (for an explanation as to why, see this). Other things being equal, an article with 9 studies with identical sample sizes is less likely to be capitalizing on chance than one containing 9 studies that range in sample size between 50 and 200 subjects (as the Bem paper does), so high variance in sample size could be used as a rough index for proclivity to peek at the data.
  • Quantifying the distribution of p values found in an individual article or an author’s entire body of work might be a reasonable first-pass measure of the amount of fudging (usually inadvertent) going on. As I pointed out in my earlier post, it’s interesting to note that with only one or two exceptions, virtually all of Bem’s statistically significant results come very close to p = .05. That’s not what you expect to see when hypothesis testing is done in a really principled way, because it’s exceedingly unlikely to think a researcher would be so lucky as to always just barely obtain the expected result. But a bunch of p = .03 and p = .048 results are exactly what you expect to find when researchers test multiple hypotheses and report only the ones that produce significant results.
  • The presence or absence of certain terms or phrases is probably at least slightly predictive of the rigorousness of the article as a whole. For instance, the frequent use of phrases like “cross-validated”, “statistical power”, “corrected for multiple comparisons”, and “unbiased” is probably a good sign (though not necessarily a strong one); conversely, terms like “exploratory”, “marginal”, and “small sample” might provide at least some indication that the reported findings are, well, exploratory.

These are just the first examples that come to mind; you can probably think of other better ones. Of course, these would all be pretty weak indicators of paper (or researcher) quality, and none of them are in any sense unambiguous measures. There are all sorts of situations in which such numbers wouldn’t mean much of anything. For instance, high variance in sample sizes would be perfectly justifiable in a case where researchers were testing for effects expected to have very different sizes, or conducting different kinds of statistical tests (e.g., detecting interactions is much harder than detecting main effects, and so necessitates larger samples). Similarly, p values close to .05 aren’t necessarily a marker of data snooping and fishing expeditions; it’s conceivable that some researchers might be so good at what they do that they can consistently design experiments that just barely manage to show what they’re intended to (though it’s not very plausible). And a failure to use terms like “corrected”, “power”, and “cross-validated” in a paper doesn’t necessarily mean the authors failed to consider important methodological issues, since such issues aren’t necessarily relevant to every single paper. So there’s no question that you’d want to take these kinds of metrics with a giant lump of salt.

Still, there are several good reasons to think that even relatively flawed automated quality metrics could serve an important purpose. First, many of the problems could be overcome to some extent through aggregation. You might not want to conclude that a particular study was poorly done simply because most of the reported p values were very close to .05; but if you were look at a researcher’s entire body of, say, thirty or forty published articles, and noticed the same trend relative to other researchers, you might start to wonder. Similarly, we could think about composite metrics that combine many different first-order metrics to generate a summary estimate of a paper’s quality that may not be so susceptible to contextual factors or noise. For instance, in the case of the Bem ESP article, a measure that took into account the variance in sample size across studies, the closeness of the reported p values to .05, the mention of terms like ‘one-tailed test’, and so on, would likely not have assigned Bem’s article a glowing score, even if each individual component of the measure was not very reliable.

Second, I’m not suggesting that crude automated metrics would replace current evaluation practices; rather, they’d be used strictly as a complement. Essentially, you’d have some additional numbers to look at, and you could choose to use them or not, as you saw fit, when evaluating a paper. If nothing else, they could help flag potential issues that reviewers might not be spontaneously attuned to. For instance, a report might note the fact that the term “interaction” was used several times in a paper in the absence of “main effect,” which might then cue a reviewer to ask, hey, why you no report main effects? — but only if they deemed it a relevant concern after looking at the issue more closely.

Third, automated metrics could be continually updated and improved using machine learning techniques. Given some criterion measure of research quality, one could systematically train and refine an algorithm capable of doing a decent job recapturing that criterion. Of course, it’s not clear that we really have any unobjectionable standard to use as a criterion in this kind of training exercise (which only underscores why it’s important to come up with better ways to evaluate scientific research). But a reasonable starting point might be to try to predict replication likelihood for a small set of well-studied effects based on the features of the original report. Could you for instance show, in an automated way, that initial effects reported in studies that failed to correct for multiple comparisons or reported p values closer to .05 were less likely to be subsequently replicated?

Of course, as always with this kind of stuff, the rub is that it’s easy to talk the talk and not so easy to walk the walk. In principle, we can make up all sorts of clever metrics, but in practice, it’s not trivial to automatically extract even a piece of information as seemingly simple as sample size from many papers (consider the difference between “Undergraduates (N = 15) participated…” and “Forty-two individuals diagnosed with depression and an equal number of healthy controls took part…”), let alone build sophisticated composite measures that could reasonably well approximate human judgments. It’s all well and good to write long blog posts about how fancy automated metrics could help separate good research from bad, but I’m pretty sure I don’t want to actually do any work to develop them, and you probably don’t either. Still, the potential benefits are clear, and it’s not like this is science fiction–it’s clearly viable on at least a modest scale. So someone should do it… Maybe Elsevier? Jorge Hirsch? Anyone? Bueller? Bueller?

of postdocs and publishing models: two opportunities of (possible) interest

I don’t usually use this blog to advertise things (so please don’t send me requests to publicize your third cousin’s upcoming bar mitzvah), but I think these two opportunities are pretty cool. They also happen to be completely unrelated, but I’m too lazy to write two separate posts, so…

Opportunity 1: We’re hiring!

Well, not me personally, but a guy I know. My current postdoc advisor, Tor Wager, is looking to hire up to 4 postdocs in the next few months to work on various NIH-funded projects related to the neural substrates of pain and emotion. You would get to play with fun things like fMRI scanners, thermal stimulators, and machine learning techniques. Oh, and snow, because we’re located in Boulder, Colorado. So we have. A lot. Of snow.

Anyway, Tor is great to work with, the lab is full of amazing people and great resources, and Boulder is a fantastic place to live, so if you have (or expect to soon have) a PhD in affective/cognitive neuroscience or related field and a background in pain/emotion research and/or fMRI analysis and/or machine learning and/or psychophysiology, you should consider applying! See this flyer for more details. And no, I’m not being paid to say this.

Opportunity 2: Design the new science!

That’s a cryptic way of saying that there’s a forthcoming special issue of Frontiers in Computational Neuroscience that’s going to focus on “Visions for Open Evaluation of Scientific Papers by Post-Publication Peer Review.” As far as I can tell, that basically means that if you’re like every other scientist, and think there’s more to scientific evaluation than the number of publications and citations one has, you now have an opportunity to design a perfect evaluation system of your very own–meaning, of course, that system in which you end up at or near the very top.

In all seriousness though, this seems like a really great idea, and I think it’s the kind of thing that could actually have a very large impact on how we’re all doing–or at least communicating–science 10 or 20 years from now. The special issue will be edited by Niko Kriegeskorte, whose excellent ideas about scientific publishing I’ve previously blogged about, and Diana Deca. Send them your best ideas! And then, if it’s not too much trouble, put my name on your paper. You know, as a finder’s fee. Abstracts are due January 15th.

The psychology of parapsychology, or why good researchers publishing good articles in good journals can still get it totally wrong

Unless you’ve been pleasantly napping under a rock for the last couple of months, there’s a good chance you’ve heard about a forthcoming article in the Journal of Personality and Social Psychology (JPSP) purporting to provide strong evidence for the existence of some ESP-like phenomenon. (If you’ve been napping, see here, here, here, here, here, or this comprehensive list). In the article–appropriately titled Feeling the FutureDaryl Bem reports the results of 9 (yes, 9!) separate experiments that catch ordinary college students doing things they’re not supposed to be able to do–things like detecting the on-screen location of erotic images that haven’t actually been presented yet, or being primed by stimuli that won’t be displayed until after a response has already been made.

As you might expect, Bem’s article’s causing quite a stir in the scientific community. The controversy isn’t over whether or not ESP exists, mind you; scientists haven’t lost their collective senses, and most of us still take it as self-evident that college students just can’t peer into the future and determine where as-yet-unrevealed porn is going to soon be hidden (as handy as that ability might be). The real question on many people’s minds is: what went wrong? If there’s obviously no such thing as ESP, how could a leading social psychologist publish an article containing a seemingly huge amount of evidence in favor of ESP in the leading social psychology journal, after being peer reviewed by four other psychologists? Or, to put it in more colloquial terms–what the fuck?

What the fuck?

Many critiques of Bem’s article have tried to dismiss it by searching for the smoking gun–the single critical methodological flaw that dooms the paper. For instance, one critique that’s been making the rounds, by Wagenmakers et al, argues that Bem should have done a Bayesian analysis, and that his failure to adjust his findings for the infitesimally low prior probability of ESP (essentially, the strength of subjective belief against ESP) means that the evidence for ESP is vastly overestimated. I think these types of argument have a kernel of truth, but also suffer from some problems (for the record, I don’t really agree with the Wagenmaker critique, for reasons Andrew Gelman has articulated here). Having read the paper pretty closely twice, I really don’t think there’s any single overwhelming flaw in Bem’s paper (actually, in many ways, it’s a nice paper). Instead, there are a lot of little problems that collectively add up to produce a conclusion you just can’t really trust. Below is a decidedly non-exhaustive list of some of these problems. I’ll warn you now that, unless you care about methodological minutiae, you’ll probably find this very boring reading. But that’s kind of the point: attending to this stuff is so boring that we tend not to do it, with potentially serious consequences. Anyway:

  • Bem reports 9 different studies, which sounds (and is!) impressive. But a noteworthy feature these studies is that they have grossly uneven sample sizes, ranging all the way from N = 50 to N = 200, in blocks of 50. As far as I can tell, no justification for these differences is provided anywhere in the article, which raises red flags, because the most common explanation for differing sample sizes–especially on this order of magnitude–is data peeking. That is, what often happens is that researchers periodically peek at their data, and halt data collection as soon as they obtain a statistically significant result. This may seem like a harmless little foible, but as I’ve discussed elsewhere, is actually a very bad thing, as it can substantially inflate Type I error rates (i.e., false positives).To his credit, Bem was at least being systematic about his data peeking, since his sample sizes always increase in increments of 50. But even in steps of 50, false positives can be grossly inflated. For instance, for a one-sample t-test, a researcher who peeks at her data in increments of 50 subjects and terminates data collection when a significant result is obtained (or N = 200, if no such result is obtained) can expect an actual Type I error rate of about 13%–nearly 3 times the nominal rate of 5%!
  • There’s some reason to think that the 9 experiments Bem reports weren’t necessarily designed as such. Meaning that they appear to have been ‘lumped’ or ‘splitted’ post hoc based on the results. For instance, Experiment 2 had 150 subjects, but the experimental design for the first 100 differed from the final 50 in several respects. They were minor respects, to be sure (e.g., pictures were presented randomly in one study, but in a fixed sequence in the other), but were still comparable in scope to those that differentiated Experiment 8 from Experiment 9 (which had the same sample size splits of 100 and 50, but were presented as two separate experiments). There’s no obvious reason why a researcher would plan to run 150 subjects up front, then decide to change the design after 100 subjects, and still call it the same study. A more plausible explanation is that Experiment 2 was actually supposed to be two separate experiments (a successful first experiment with N = 100 followed by an intended replication with N = 50) that was collapsed into one large study when the second experiment failed–preserving the statistically significant result in the full sample. Needless to say, this kind of lumping and splitting is liable to additionally inflate the false positive rate.
  • Most of Bem’s experiments allow for multiple plausible hypotheses, and it’s rarely clear why Bem would have chosen, up front, the hypotheses he presents in the paper. For instance, in Experiment 1, Bem finds that college students are able to predict the future location of erotic images that haven’t yet been presented (essentially a form of precognition), yet show no ability to predict the location of negative, positive, or romantic pictures. Bem’s explanation for this selective result is that “… such anticipation would be evolutionarily advantageous for reproduction and survival if the organism could act instrumentally to approach erotic stimuli …”. But this seems kind of silly on several levels. For one thing, it’s really hard to imagine that there’s an adaptive benefit to keeping an eye out for potential mates, but not for other potential positive signals (represented by non-erotic positive images). For another, it’s not like we’re talking about actual people or events here; we’re talking about digital images on an LCD. What Bem is effectively saying is that, somehow, someway, our ancestors evolved the extrasensory capacity to read digital bits from the future–but only pornographic ones. Not very compelling, and one could easily have come up with a similar explanation in the event that any of the other picture categories had selectively produced statistically significant results. Of course, if you get to test 4 or 5 different categories at p < .05, and pretend that you called it ahead of time, your false positive rate isn’t really 5%–it’s closer to 20%.
  • I say p < .05, but really, it’s more like p < .1, because the vast majority of tests Bem reports use one-tailed tests–effectively instantaneously doubling the false positive rate. There’s a long-standing debate in the literature, going back at least 60 years, as to whether it’s ever appropriate to use one-tailed tests, but even proponents of one-tailed tests will concede that you should only use them if you really truly have a directional hypothesis in mind before you look at your data. That seems exceedingly unlikely in this case, at least for many of the hypotheses Bem reports testing.
  • Nearly all of Bem’s statistically significant p values are very close to the critical threshold of .05. That’s usually a marker of selection bias, particularly given the aforementioned unevenness of sample sizes. When experiments are conducted in a principled way (i.e., with minimal selection bias or peeking), researchers will often get very low p values, since it’s very difficult to know up front exactly how large effect sizes will be. But in Bem’s 9 experiments, he almost invariably collects just enough subjects to detect a statistically significant effect. There are really only two explanations for that: either Bem is (consciously or unconsciously) deciding what his hypotheses are based on which results attain significance (which is not good), or he’s actually a master of ESP himself, and is able to peer into the future and identify the critical sample size he’ll need in each experiment (which is great, but unlikely).
  • Some of the correlational effects Bem reports–e.g., that people with high stimulus seeking scores are better at ESP–appear to be based on measures constructed post hoc. For instance, Bem uses a non-standard, two-item measure of boredom susceptibility, with no real justification provided for this unusual item selection, and no reporting of results for the presumably many other items and questionnaires that were administered alongside these items (except to parenthetically note that some measures produced non-significant results and hence weren’t reported). Again, the ability to select from among different questionnaires–and to construct custom questionnaires from different combinations of items–can easily inflate Type I error.
  • It’s not entirely clear how many studies Bem ran. In the Discussion section, he notes that he could “identify three sets of findings omitted from this report so far that should be mentioned lest they continue to languish in the file drawer”, but it’s not clear from the description that follows exactly how many studies these “three sets of findings” comprised (or how many ‘pilot’ experiments were involved). What we’d really like to know is the exact number of (a) experiments and (b) subjects Bem ran, without qualification, and including all putative pilot sessions.

It’s important to note that none of these concerns is really terrible individually. Sure, it’s bad to peek at your data, but data peeking alone probably isn’t going to produce 9 different false positives. Nor is using one-tailed tests, or constructing measures on the fly, etc. But when you combine data peeking, liberal thresholds, study recombination, flexible hypotheses, and selective measures, you have a perfect recipe for spurious results. And the fact that there are 9 different studies isn’t any guard against false positives when fudging is at work; if anything, it may make it easier to produce a seemingly consistent story, because reviewers and readers have a natural tendency to relax the standards for each individual experiment. So when Bem argues that “…across all nine experiments, Stouffer’s z = 6.66, p = 1.34 × 10-11,” that statement that the cumulative p value is 1.34 x 10-11 is close to meaningless. Combining p values that way would only be appropriate under the assumption that Bem conducted exactly 9 tests, and without any influence of selection bias. But that’s clearly not the case here.

What would it take to make the results more convincing?

Admittedly, there are quite a few assumptions involved in the above analysis. I don’t know for a fact that Bem was peeking at his data; that just seems like a reasonable assumption given that no justification was provided anywhere for the use of uneven samples. It’s conceivable that Bem had perfectly good, totally principled, reasons for conducting the experiments exactly has he did. But if that’s the case, defusing these criticisms should be simple enough. All it would take for Bem to make me (and presumably many other people) feel much more comfortable with the results is an affirmation of the following statements:

  • That the sample sizes of the different experiments were determined a priori, and not based on data snooping;
  • That the distinction between pilot studies and ‘real’ studies was clearly defined up front–i.e., there weren’t any studies that started out as pilots but eventually ended up in the paper, or studies that were supposed to end up in the paper but that were disqualified as pilots based on the (lack of) results;
  • That there was a clear one-to-one mapping between intended studies and reported studies; i.e., Bem didn’t ‘lump’ together two different studies in cases where one produced no effect, or split one study into two in cases where different subsets of the data both showed an effect;
  • That the predictions reported in the paper were truly made a priori, and not on the basis of the results (e.g., that the hypothesis that sexually arousing stimuli would be the only ones to show an effect was actually written down in one of Bem’s notebooks somewhere);
  • That the various transformations applied to the RT and memory performance measures in some Experiments weren’t selected only after inspecting the raw, untransformed values and failing to identify significant results;
  • That the individual differences measures reported in the paper were selected a priori and not based on post-hoc inspection of the full pattern of correlations across studies;
  • That Bem didn’t run dozens of other statistical tests that failed to produce statistically non-significant results and hence weren’t reported in the paper.

Endorsing this list of statements (or perhaps a somewhat more complete version, as there are other concerns I didn’t mention here) would be sufficient to cast Bem’s results in an entirely new light, and I’d go so far as to say that I’d even be willing to suspend judgment on his conclusions pending additional data (which would be a big deal for me, since I don’t have a shred of a belief in ESP). But I confess that I’m not holding my breath, if only because I imagine that Bem would have already addressed these concerns in his paper if there were indeed principled justifications for the design choices in question.

It isn’t a bad paper

If you’ve read this far (why??), this might seem like a pretty damning review, and you might be thinking, boy, this is really a terrible paper. But I don’t think that’s true at all. In many ways, I think Bem’s actually been relatively careful. The thing to remember is that this type of fudging isn’t unusual; to the contrary, it’s rampant–everyone does it. And that’s because it’s very difficult, and often outright impossible, to avoid. The reality is that scientists are human, and like all humans, have a deep-seated tendency to work to confirm what they already believe. In Bem’s case, there are all sorts of reasons why someone who’s been working for the better part of a decade to demonstrate the existence of psychic phenomena isn’t necessarily the most objective judge of the relevant evidence. I don’t say that to impugn Bem’s motives in any way; I think the same is true of virtually all scientists–including myself. I’m pretty sure that if someone went over my own work with a fine-toothed comb, as I’ve gone over Bem’s above, they’d identify similar problems. Put differently, I don’t doubt that, despite my best efforts, I’ve reported some findings that aren’t true, because I wasn’t as careful as a completely disinterested observer would have been. That’s not to condone fudging, of course, but simply to recognize that it’s an inevitable reality in science, and it isn’t fair to hold Bem to a higher standard than we’d hold anyone else.

If you set aside the controversial nature of Bem’s research, and evaluate the quality of his paper purely on methodological grounds, I don’t think it’s any worse than the average paper published in JPSP, and actually probably better. For all of the concerns I raised above, there are many things Bem is careful to do that many other researchers don’t. For instance, he clearly makes at least a partial effort to avoid data peeking by collecting samples in increments of 50 subjects (I suspect he simply underestimated the degree to which Type I error rates can be inflated by peeking, even with steps that large); he corrects for multiple comparisons in many places (though not in some places where it matters); and he devotes an entire section of the discussion to considering the possibility that he might be inadvertently capitalizing on chance by falling prey to certain biases. Most studies–including most of those published in JPSP, the premier social psychology journal–don’t do any of these things, even though the underlying problems are just applicable. So while you can confidently conclude that Bem’s article is wrong, I don’t think it’s fair to say that it’s a bad article–at least, not by the standards that currently hold in much of psychology.

Should the study have been published?

Interestingly, much of the scientific debate surrounding Bem’s article has actually had very little to do with the veracity of the reported findings, because the vast majority of scientists take it for granted that ESP is bunk. Much of the debate centers instead over whether the article should have ever been published in a journal as prestigious as JPSP (or any other peer-reviewed journal, for that matter). For the most part, I think the answer is yes. I don’t think it’s the place of editors and reviewers to reject a paper based solely on the desirability of its conclusions; if we take the scientific method–and the process of peer review–seriously, that commits us to occasionally (or even frequently) publishing work that we believe time will eventually prove wrong. The metrics I think reviewers should (and do) use are whether (a) the paper is as good as most of the papers that get published in the journal in question, and (b) the methods used live up to the standards of the field. I think that’s true in this case, so I don’t fault the editorial decision. Of course, it sucks to see something published that’s virtually certain to be false… but that’s the price we pay for doing science. As long as they play by the rules, we have to engage with even patently ridiculous views, because sometimes (though very rarely) it later turns out that those views weren’t so ridiculous after all.

That said, believing that it’s appropriate to publish Bem’s article given current publishing standards doesn’t preclude us from questioning those standards themselves. On a pretty basic level, the idea that Bem’s article might be par for the course, quality-wise, yet still be completely and utterly wrong, should surely raise some uncomfortable questions about whether psychology journals are getting the balance between scientific novelty and methodological rigor right. I think that’s a complicated issue, and I’m not going to try to tackle it here, though I will say that personally I do think that more stringent standards would be a good thing for psychology, on the whole. (It’s worth pointing out that the problem of (arguably) lax standards is hardly unique to psychology; as John Ionannidis has famously pointed out, most published findings in the biomedical sciences are false.)

Conclusion

The controversy surrounding the Bem paper is fascinating for many reasons, but it’s arguably most instructive in underscoring the central tension in scientific publishing between rapid discovery and innovation on the one hand, and methodological rigor and cautiousness on the other. Both values are important, but it’s important to recognize the tradeoff that pursuing either one implies. Many of the people who are now complaining that JPSP should never have published Bem’s article seem to overlook the fact that they’ve probably benefited themselves from the prevalence of the same relaxed standards (note that by ‘relaxed’ I don’t mean to suggest that journals like JPSP are non-selective about what they publish, just that methodological rigor is only one among many selection criteria–and often not the most important one). Conversely, maintaining editorial standards that would have precluded Bem’s article from being published would almost certainly also make it much more difficult to publish most other, much less controversial, findings. A world in which fewer spurious results are published is a world in which fewer studies are published, period. You can reasonably debate whether that would be a good or bad thing, but you can’t have it both ways. It’s wishful thinking to imagine that reviewers could somehow grow a magic truth-o-meter that applies lax standards to veridical findings and stringent ones to false positives.

From a bird’s eye view, there’s something undeniably strange about the idea that a well-respected, relatively careful researcher could publish an above-average article in a top psychology journal, yet have virtually everyone instantly recognize that the reported findings are totally, irredeemably false. You could read that as a sign that something’s gone horribly wrong somewhere in the machine; that the reviewers and editors of academic journals have fallen down and can’t get up, or that there’s something deeply flawed about the way scientists–or at least psychologists–practice their trade. But I think that’s wrong. I think we can look at it much more optimistically. We can actually see it as a testament to the success and self-corrective nature of the scientific enterprise that we actually allow articles that virtually nobody agrees with to get published. And that’s because, as scientists, we take seriously the possibility, however vanishingly small, that we might be wrong about even our strongest beliefs. Most of us don’t really believe that Cornell undergraduates have a sixth sense for future porn… but if they did, wouldn’t you want to know about it?

ResearchBlogging.org
Bem, D. J. (2011). Feeling the Future: Experimental Evidence for Anomalous Retroactive Influences on Cognition and Affect Journal of Personality and Social Psychology

how many Cortex publications in the hand is a Nature publication in the bush worth?

A provocative and very short Opinion piece by Julien Mayor (Are scientists nearsighted gamblers? The misleading nature of impact factors) was recently posted on the Frontiers in Psychology website (open access! yay!). Mayor’s argument is summed up nicely in this figure:

The left panel plots the mean versus median number of citations per article in a given year (each year is a separate point) for 3 journals: Nature (solid circles), Psych Review (squares), and Psych Science (triangles). The right panel plots the number of citations each paper receives in each of the first 15 years following its publication. What you can clearly see is that (a) the mean and median are very strongly related for the psychology journals, but completely unrelated for Nature, implying that a very small number of articles account for the vast majority of Nature citations (Mayor cites data indicating that up to 40% of Nature papers are never cited); and (b) Nature papers tend to get cited heavily for a year or two, and then disappear, whereas Psych Science, and particularly Psych Review, tend to have much longer shelf lives. Based on these trends, Mayor concludes that:

From this perspective, the IF, commonly accepted as golden standard for performance metrics seems to reward high-risk strategies (after all your Nature article has only slightly over 50% chance of being ever cited!), and short-lived outbursts. Are scientists then nearsighted gamblers?

I’d very much like to believe this, in that I think the massive emphasis scientists collectively place on publishing work in broad-interest, short-format journals like Nature and Science is often quite detrimental to the scientific enterprise as a whole. But I don’t actually believe it, because I think that, for any individual paper, researchers generally do have good incentives to try to publish in the glamor mags rather than in more specialized journals. Mayor’s figure, while informative, doesn’t take a number of factors into account:

  • The type of papers that gets published in Psych Review and Nature are very different. Review papers, in general, tend to get cited more often, and for a longer time. A better comparison would be between Psych Review papers and only review papers in Nature (there’s not many of them, unfortunately). My guess is that that difference alone probably explains much of the difference in citation rates later on in an article’s life. That would also explain why the temporal profile of Psych Science articles (which are also overwhelmingly short empirical reports) is similar to that of Nature. Major theoretical syntheses stay relevant for decades; individual empirical papers, no matter how exciting, tend to stop being cited as frequently once (a) the finding fails to replicate, or (b) a literature builds up around the original report, and researchers stop citing individual studies and start citing review articles (e.g., in Psych Review).
  • Scientists don’t just care about citation counts, they also care about reputation. The reality is that much of the appeal of having a Nature or Science publication isn’t necessarily that you expect the work to be cited much more heavily, but that you get to tell everyone else how great you must be because you have a publication in Nature. Now, on some level, we know that it’s silly to hold glamor mags in such high esteem, and Mayor’s data are consistent with that idea. In an ideal world, we’d read all papers ultra-carefully before making judgments about their quality, rather than using simple but flawed heuristics like what journal those papers happen to be published in. But this isn’t an ideal world, and the reality is that people do use such heuristics. So it’s to each scientist’s individual advantage (but to the field’s detriment) to take advantage of that knowledge.
  • Different fields have very different citation rates. And articles in different fields have very different shelf lives. For instance, I’ve heard that in many areas of physics, the field moves so fast that articles are basically out of date within a year or two (I have no way to verify if this is true or not). That’s certainly not true of most areas of psychology. For instance, in cognitive neuroscience, the current state of the field in many areas is still reasonably well captured by highly-cited publications that are 5 – 10 years old. Most behavioral areas of psychology seem to advance even more slowly. So one might well expect articles in psychology journals to peak later in time than the average Nature article, because Nature contains a high proportion of articles in the natural sciences.
  • Articles are probably selected for publication in Nature, Psych Science, and Psych Review for different reasons. In particular, there’s no denying the fact that Nature selects articles in large part based on the perceived novelty and unexpectedness of the result. That’s not to say that methodological rigor doesn’t play a role, just that, other things being equal, unexpected findings are less likely to be replicated. Since Nature and Science overwhelmingly publish articles with new and surprising findings, it shouldn’t be surprising if the articles in these journals have a lower rate of replication several years on (and hence, stop being cited). That’s presumably going to be less true of articles in specialist journals, where novelty factor and appeal to a broad audience are usually less important criteria.

Addressing these points would probably go a long way towards closing, and perhaps even reversing, the gap implied  by Mayor’s figure. I suspect that if you could do a controlled experiment and publish the exact same article in Nature and Psych Science, it would tend to get cited more heavily in Nature over the long run. So in that sense, if citations were all anyone cared about, I think it would be perfectly reasonable for scientists to try to publish in the most prestigious journals–even though, again, I think the pressure to publish in such journals actually hurts the field as a whole.

Of course, in reality, we don’t just care about citation counts anyway; lots of other things matter. For one thing, we also need to factor in the opportunity cost associated with writing a paper up in a very specific format for submission to Nature or Science, knowing that we’ll probably have to rewrite much or all of it before it gets published. All that effort could probably have been spent on other projects, so one way to put the question is: how many lower-tier publications in the hand is a top-tier publication in the bush worth?

Ultimately, it’s an empirical matter; I imagine if you were willing to make some strong assumptions, and collect the right kind of data, you could come up with a meaningful estimate of the actual value of a Nature publication, as a function of important variables like the number of other publications the authors had, the amount of work invested in rewriting the paper after rejection, the authors’ career stage, etc. But I don’t know of any published work to that effect; it seems like it would probably be more trouble than it was worth (or, to get meta: how many Nature manuscripts can you write in the time it takes you to write a manuscript about how many Nature manuscripts you should write?). And, to be honest, I suspect that any estimate you obtained that way would have little or no impact on the actual decisions scientists make about where to submit their manuscripts anyway, because, in practice, such decisions are driven as much by guesswork and wishful thinking as by any well-reasoned analysis. And on that last point, I speak from extensive personal experience…

what the arsenic effect means for scientific publishing

I don’t know very much about DNA (and by ‘not very much’ I sadly mean ‘next to nothing’), so when someone tells me that life as we know it generally doesn’t use arsenic to make DNA, and that it’s a big deal to find a bacterium that does, I’m willing to believe them. So too, apparently, are at least two or three reviewers for Science, which published a paper last week by a NASA group purporting to demonstrate exactly that.

Turns out the paper might have a few holes. In the last few days, the blogosphere has reached fever delirium pitch as critiques of the article have emerged from every corner; it seems like pretty much everyone with some knowledge of the science in question is unhappy about the paper. Since I’m not in any position to critique the article myself, I’ll take Carl Zimmer’s word for it in Slate yesterday:

Was this merely a case of a few isolated cranks? To find out, I reached out to a dozen experts on Monday. Almost unanimously, they think the NASA scientists have failed to make their case.  “It would be really cool if such a bug existed,” said San Diego State University’s Forest Rohwer, a microbiologist who looks for new species of bacteria and viruses in coral reefs. But, he added, “none of the arguments are very convincing on their own.” That was about as positive as the critics could get. “This paper should not have been published,” said Shelley Copley of the University of Colorado.

Zimmer then follows his Slate piece up with a blog post today in which he provides 13 experts’ unadulterated comments. While there are one or two (somewhat) positive reviews, the consensus clearly seems to be that the Science paper is (very) bad science.

Of course, scientists (yes, even Science reviewers) do occasionally make mistakes, so if we’re being charitable about it, we might chalk it up to human error (though some of the critiques suggest that these are elementary problems that could have been very easily addressed, so it’s possible there’s some disingenuousness involved). But what many bloggers (1, 2, 3, etc.) have found particularly inexcusable is the way NASA and the research team have handled the criticism. Zimmer again, in Slate:

I asked two of the authors of the study if they wanted to respond to the criticism of their paper. Both politely declined by email.

“We cannot indiscriminately wade into a media forum for debate at this time,” declared senior author Ronald Oremland of the U.S. Geological Survey. “If we are wrong, then other scientists should be motivated to reproduce our findings. If we are right (and I am strongly convinced that we are) our competitors will agree and help to advance our understanding of this phenomenon. I am eager for them to do so.”

“Any discourse will have to be peer-reviewed in the same manner as our paper was, and go through a vetting process so that all discussion is properly moderated,” wrote Felisa Wolfe-Simon of the NASA Astrobiology Institute. “The items you are presenting do not represent the proper way to engage in a scientific discourse and we will not respond in this manner.”

A NASA spokesperson basically reiterated this point of view, indicating that NASA scientists weren’t going to respond to criticism of their work unless that criticism appeared in, you know, a respectable, peer-reviewed outlet. (Fortunately, at least one of the critics already has a draft letter to Science up on her blog.)

I don’t think it’s surprising that people who spend much of their free time blogging about science, and think it’s important to discuss scientific issues in a public venue, generally aren’t going to like being told that science blogging isn’t a legitimate form of scientific discourse. Especially considering that the critics here aren’t laypeople without scientific training; they’re well-respected scientists with areas of expertise that are directly relevant to the paper. In this case, dismissing trenchant criticism because it’s on the web rather than in a peer-reviewed journal seems kind of like telling someone who’s screaming at you that your house is on fire that you’re not going to listen to them until they adopt a more polite tone. It just seems counterproductive.

That said, I personally don’t think we should take the NASA team’s statements at face value. I very much doubt that what the NASA researchers are saying really reflect any deep philosophical view about the role of blogs in scientific discourse; it’s much more likely that they’re simply trying to buy some time while they figure out how to respond. On the face of it, they have a choice between two lousy options: either ignore the criticism entirely, which would be antithetical to the scientific process and would look very bad, or address it head-on–which, judging by the vociferousness and near-unanimity of the commentators, is probably going to be a losing battle. Shifting the terms of the debate by insisting on responding only in a peer-reviewed venue doesn’t really change anything, but it does buy the authors two or three weeks. And two or three weeks is worth like, forty attentional cycles in the blogosphere.

Mind you, I’m not saying we should sympathize with the NASA researchers just because they’re in a tough position. I think one of the main reasons the story’s attracted so much attention is precisely because people see it as a case of justice being served. The NASA team called a major press conference ahead of the paper’s publication, published its results in one of the world’s most prestigious science journals, and yet apparently failed to run relatively basic experimental controls in support of its conclusions. If the critics are to be believed, the NASA researchers are either disingenuous or incompetent; either way, we shouldn’t feel sorry for them.

What I do think this episode shows is that the rules of scientific publishing have fundamentally changed in the last few years–and largely for the better. I haven’t been doing science for very long, but even in the halcyon days of 2003, when I started graduate school, science blogging was practically nonexistent, and the main way you’d find out what other people thought about an influential new paper was by talking to people you knew at conferences (which could take several months) or waiting for critiques or replication failures to emerge in other peer-reviewed journals (which could take years). That kind of delay between publication and evaluation is disastrous for science, because in the time it takes for a consensus to emerge that a paper is no good, several research teams might have already started trying to replicate and extend the reported findings, and several dozen other researchers might have uncritically cited their paper peripherally in their own work. This delay is probably why, as John Ioannidis’ work so elegantly demonstrates, major studies published in high-impact journals tend to exert a disproportionate influence on the literature long after they’ve been resoundingly discredited.

The Arsenic Effect, if we can call it that, provides a nice illustration of the impact of new media on scientific communication. It’s a safe bet that there are now very few people who do anything even vaguely related to the NASA team’s research who haven’t been made aware that the reported findings are controversial. Which means that the process of attempting to replicate (or falsify) the findings will proceed much more quickly than it might have ten or twenty years ago, and there probably won’t be very many people who cite the Science paper as compelling evidence of terrestrial arsenic-based life. Perhaps more importantly, as researchers get used to the idea that their high-profile work is going to be instantly evaluated by thousands of pairs of highly trained eyes, any of which might be attached to a highly prolific pair of typing hands, there will be an increasingly strong disincentive to avoid being careless. That isn’t to say that bad science will disappear, of course; just that, in cases where the badness reflects a pressure to tell a good story at all costs, we’ll probably see less of it.

PLoS ONE needs new subjects

I like the PLoS journals, including PLoS ONE, a lot. But it drives me a little bit crazy that the list of PLoS ONE subjects includes things like Non-Clinical Health, Nutrition, and Science Policy, while perfectly respectable subjects like Psychology, Economics, and Political Science are nowhere to be found (note: I’m not saying there’s anything wrong with Nutrition, just that there’s also nothing wrong with Psychology).

I can sort of understand the rationale; PLoS ONE is supposed to be a science journal, and I imagine the editors feel that if they opened up the door to the aforementioned categories, some of the submissions they’d start receiving would have tenuous or nonexistent relationships to anything that you could call science. But in practice, PLoS ONE already does take articles in all of those subjects–and many others. And what then happens, no doubt, is that the editorial board has epic battles over which of the 40-odd existing subjects is going to become the proud beneficiary of a completely unrelated article.

I imagine it goes down something like this:

Editor A: Look, “Patriarchal principles of pop music in a post-Jacksonian era” is clearly an Epidemiology article. It’s going under Public Health and Epidemiology.

Editor B: Don’t be a fool. There isn’t a single word in the paper about health or disease. You’d know that if you’d bothered to read it. It obviously belongs under Mental Health.

Editor A: Absolutely not. Infectious Diseases, Pediatrics and Child Health, or Anesthesiology and Pain Management. Pick one. Final offer.

Editor B: No. But I’ll tell you what. Send it back to the authors, ask them to add a section on the influence of barbiturates and opiates on modern composition, and then we’ll stick it under Pharmacology.

Editor A: Deal.

Lest you think I’m making shit up exaggerating, witness exhibit A: a paper published today by Araújo et al entitled “Tactical Voting in Plurality Elections”. To be fair, I don’t know anything about tactics, voting, plurality, or elections, so I can’t tell you if the paper is any good or not. It looks interesting, but I don’t understand much more than the abstract.

What I can tell you though with something approaching certainty is that the paper has absolutely nothing to do with Neuroscience–which is one of the categories it’s filed under (the other is Physics, which it also seems to bear no relation to, save for the fact that the authors are physicists). It doesn’t mention the words ‘brain’, ‘neuro-‘, ‘neural’, or ‘neuron’ anywhere in the text, which is pretty much a necessary condition for a neuroscience article in my book. The only conceivable link I can think of is that it’s a paper about voting, and voting is done by people, and people have brains. But that’s not very compelling. Really, it should go under Political Science, or Economics, or Applied Statistics, or even a catch-all category like Social Sciences. Except that none of those exist.

Pretty please, PLoS ONE, can we get a Social Sciences section?

and the runner up is…

This one’s a bit of a head-scratcher. Thomson-Reuters just released its 2009 Journal Citation Report–essentially a comprehensive ranking of scientific journals by their impact factor (IF). The odd part, as reported by Bob Grant in The Scientist, is that the journal with the second-highest IF is Acta Crystallographica – Section A–ahead of heavyweights like the New England Journal of Medicine. For perspective, the same journal had an IF of 2.051 in 2008. The reason for the jump?

A single article published in a 2008 issue of the journal seems to be responsible for the meteoric rise in the Acta Crystallographica – Section A‘s impact factor. “A short history of SHELX,” by University of Göttingen crystallographer George Sheldrick, which reviewed the development of the computer system SHELX, has been cited more than 6,600 times, according to ISI. This paper includes a sentence that essentially instructs readers to cite the paper they’re reading — “This paper could serve as a general literature citation when one or more of the open-source SHELX programs (and the Bruker AXS version SHELXTL) are employed in the course of a crystal-structure determination.” (Note: This may be a good way to boost your citations.)

Setting aside the good career advice (and yes, I’ve made a mental note to include the phrase “this paper could serve as a general literature citation…” in my next paper), it’s perplexing that Thomson-Reuters didn’t downweight Acta Crystallographica‘s IF considerably given the obvious outlier. There’s no question they would have noticed that the second-ranked journal was only there in virtue of one article, so I’m curious what the thought process was. Perhaps the deliberation went something like this:

Thomson-Reuters statistician A: We need to take it out! We can’t have a journal with an impact factor of 2 last year beat out the NEJM!

Thomson-Reuters statistician B: But if we take it out, it’ll look like we tampered with the IF!

TRS-A: But we already tamper with the IF! No one knows how we come up with these numbers! Sometimes we can’t even replicate our own results ourselves! And anyway, it’s really not a big deal if we just leave the article in; scientists know better than to think Acta Crystallographica is the second most influential science journal on the planet. They’ll figure it out.

TRS-B: But that’s like asking them to just disregard our numbers! If you’re supposed to ignore the impact factor in cases where it contradicts your perception of journal quality, what’s the point of having an impact factor at all?

TRS-A: Beats me.

So okay, I’m sure it didn’t go down quite like that. But it’s still pretty weird.
And now, having bitched about how arbitrary the IF is, I’m going to go off and spend the next 15 minutes perusing the psychology and neuroscience journal rankings…

one possible future of scientific publishing

Like many (most?) scientists, I’ve often wondered what a world without Elsevier would look like. Not just Elsevier, mind you; really, the entire current structure of academic publishing, which revolves around a gatekeeper model where decisions about what gets published where are concentrated in the hands of a very few people (typically, an editor and two or three reviewers). The way scientists publish papers really hasn’t kept up with the pace of technology; the tools we have these days allow us, in theory, to build systems that support the immediate and open publication of scientific findings, which could then be publicly reviewed, collaboratively filtered, and quantitatively evaluated using all sorts of metrics that just aren’t available in a closed system.

One particularly compelling vision is articulated by Niko Kriegeskorte, who presents a beautiful schematic of one potential approach to the future of academic publishing. I’m a big fan of Niko’s work (see e.g., this, this, or this)–almost everything he publishes is great, and his articles consistently feature absolutely stunning figures–and these ideas are no exception. The central motif, which I’m wholly sympathetic to, is to eliminate gatekeepers and promote open review and evaluation. Instead of a secret cabal small group of other researchers (and potential competitors) making behind-the-scenes decisions about whether to accept or reject your paper, you’d publish your findings online in a centralized repository as soon as you felt it was ready for prime time. At that point, the broader community of researchers would set about evaluating, rating, and commenting on your work. Crucially, all of the reviews would also be made public (either in signed or anonymous form), so that other researchers could evaluate not only the work itself, but also the responses to it. Reviews would therefore count as a form of publication, and one can then imagine all sorts of sophisticated metrics that could take into account not only the reception of one’s publications, but also the quality and nature of the reviews themselves, the quality of one’s own ratings of others’ work, and so on. Schematically, it looks like this:

review review review!

Anyway, that’s just a cursory overview; Niko’s clearly put a lot of thought into developing a publishing architecture that overcomes the drawbacks of the current system while providing researchers with an incentive to participate (the sociological obstacles are arguably greater than the technical ones in this case). Well, at least in theory. Admittedly, it’s always easier to design a complex system on paper than to actually build it and make it work. But you have to start somewhere, and this seems like a pretty good place.