PLoS ONE needs new subjects

I like the PLoS journals, including PLoS ONE, a lot. But it drives me a little bit crazy that the list of PLoS ONE subjects includes things like Non-Clinical Health, Nutrition, and Science Policy, while perfectly respectable subjects like Psychology, Economics, and Political Science are nowhere to be found (note: I’m not saying there’s anything wrong with Nutrition, just that there’s also nothing wrong with Psychology).

I can sort of understand the rationale; PLoS ONE is supposed to be a science journal, and I imagine the editors feel that if they opened up the door to the aforementioned categories, some of the submissions they’d start receiving would have tenuous or nonexistent relationships to anything that you could call science. But in practice, PLoS ONE already does take articles in all of those subjects–and many others. And what then happens, no doubt, is that the editorial board has epic battles over which of the 40-odd existing subjects is going to become the proud beneficiary of a completely unrelated article.

I imagine it goes down something like this:

Editor A: Look, “Patriarchal principles of pop music in a post-Jacksonian era” is clearly an Epidemiology article. It’s going under Public Health and Epidemiology.

Editor B: Don’t be a fool. There isn’t a single word in the paper about health or disease. You’d know that if you’d bothered to read it. It obviously belongs under Mental Health.

Editor A: Absolutely not. Infectious Diseases, Pediatrics and Child Health, or Anesthesiology and Pain Management. Pick one. Final offer.

Editor B: No. But I’ll tell you what. Send it back to the authors, ask them to add a section on the influence of barbiturates and opiates on modern composition, and then we’ll stick it under Pharmacology.

Editor A: Deal.

Lest you think I’m making shit up exaggerating, witness exhibit A: a paper published today by Araújo et al entitled “Tactical Voting in Plurality Elections”. To be fair, I don’t know anything about tactics, voting, plurality, or elections, so I can’t tell you if the paper is any good or not. It looks interesting, but I don’t understand much more than the abstract.

What I can tell you though with something approaching certainty is that the paper has absolutely nothing to do with Neuroscience–which is one of the categories it’s filed under (the other is Physics, which it also seems to bear no relation to, save for the fact that the authors are physicists). It doesn’t mention the words ‘brain’, ‘neuro-‘, ‘neural’, or ‘neuron’ anywhere in the text, which is pretty much a necessary condition for a neuroscience article in my book. The only conceivable link I can think of is that it’s a paper about voting, and voting is done by people, and people have brains. But that’s not very compelling. Really, it should go under Political Science, or Economics, or Applied Statistics, or even a catch-all category like Social Sciences. Except that none of those exist.

Pretty please, PLoS ONE, can we get a Social Sciences section?

the naming of things

Let’s suppose you were charged with the important task of naming all the various subdisciplines of neuroscience that have anything to do with the field of research we now know as psychology. You might come up with some or all of the following terms, in no particular order:

  • Neuropsychology
  • Biological psychology
  • Neurology
  • Cognitive neuroscience
  • Cognitive science
  • Systems neuroscience
  • Behavioral neuroscience
  • Psychiatry

That’s just a partial list; you’re resourceful, so there are probably others (biopsychology? psychobiology? psychoneuroimmunology?). But it’s a good start. Now suppose you decided to make a game out of it, and threw a dinner party where each guest received a copy of your list (discipline names only–no descriptions!) and had to guess what they thought people in that field study. If your nomenclature made any sense at all, and tried to respect the meanings of the individual words used to generate the compound words or phrases in your list, your guests might hazard something like the following guesses:

  • Neuropsychology: “That’s the intersection of neuroscience and psychology. Meaning, the study of the neural mechanisms underlying cognitive function.”
  • Biological psychology: “Similar to neuropsychology, but probably broader. Like, it includes the role of genes and hormones and kidneys in cognitive function.”
  • Neurology: “The pure study of the brain, without worrying about all of that associated psychological stuff.”
  • Cognitive neuroscience: “Well if it doesn’t mean the same thing as neuropsychology and biological psychology, then it probably refers to the branch of neuroscience that deals with how we think and reason. Kind of like cognitive psychology, only with brains!”
  • Cognitive science: “Like cognitive neuroscience, but not just for brains. It’s the study of human cognition in general.”
  • Systems neuroscience: “Mmm… I don’t really know. The study of how the brain functions as a whole system?”
  • Behavioral neuroscience: “Easy: it’s the study of the relationship between brain and behavior. For example, how we voluntarily generate actions.”
  • Psychiatry: “That’s the branch of medicine that concerns itself with handing out multicolored pills that do funny things to your thoughts and feelings. Of course.”

If this list seems sort of sensible to you, you probably live in a wonderful world where compound words mean what you intuitively think they mean, the subject matter of scientific disciplines can be transparently discerned, and everyone eats ice cream for dinner every night terms that sound extremely similar have extremely similar referents rather than referring to completely different fields of study. Unfortunately, that world is not the world we happen to actually inhabit. In our world, most of the disciplines at the intersection of psychology and neuroscience have funny names that reflect accidents of history, and tell you very little about what the people in that field actually study.

Here’s the list your guests might hand back in this world, if you ever made the terrible, terrible mistake of inviting a bunch of working scientists to dinner:

  • Neuropsychology: The study of how brain damage affects cognition and behavior. Most often focusing on the effects of brain lesions in humans, and typically relying primarily on behavioral evaluations (i.e., no large magnetic devices that take photographs of the space inside people’s skulls). People who call themselves neuropsychologists are overwhelmingly trained as clinical psychologists, and many of them work in big white buildings with a red cross on the front. Note that this isn’t the definition of neuropsychology that Wikipedia gives you; Wikipedia seems to think that neuropsychology is “the basic scientific discipline that studies the structure and function of the brain related to specific psychological processes and overt behaviors.” Nice try, Wikipedia, but that’s much too general. You didn’t even use the words ‘brain damage’, ‘lesion’, or ‘patient’ in the first sentence.
  • Biological psychology: To be perfectly honest, I’m going to have to step out of dinner-guest character for a moment and admit I don’t really have a clue what biological psychologists study. I can’t remember the last time I heard someone refer to themselves as a biological psychologist. To an approximation, I think biological psychology differs from, say, cognitive neuroscience in placing greater emphasis on everything outside of higher cognitive processes (sensory systems, autonomic processes, the four F’s, etc.). But that’s just idle speculation based largely on skimming through the chapter names of my old “Biological Psychology” textbook. What I can definitively confidently comfortably tentatively recklessly assert is that you really don’t want to trust the Wikipedia definition here, because when you type ‘biological psychology‘ into that little box that says ‘search’ on Wikipedia, it redirects you to the behavioral neuroscience entry. And that can’t be right, because, as we’ll see in a moment, behavioral neuroscience refers to something very different…
  • Neurology: Hey, look! A wikipedia entry that doesn’t lie to our face! It says neurology is “a medical specialty dealing with disorders of the nervous system. Specifically, it deals with the diagnosis and treatment of all categories of disease involving the central, peripheral, and autonomic nervous systems, including their coverings, blood vessels, and all effector tissue, such as muscle.” That’s a definition I can get behind, and I think 9 out of 10 dinner guests would probably agree (the tenth is probably drunk). But then, I’m not (that kind of) doctor, so who knows.
  • Cognitive neuroscience: In principle, cognitive neuroscience actually means more or less what it sounds like it means. It’s the study of the neural mechanisms underlying cognitive function. In practice, it all goes to hell in a handbasket when you consider that you can prefix ‘cognitive neuroscience’ with pretty much any adjective you like and end up with a valid subdiscipline. Developmental cognitive neuroscience? Check. Computational cognitive neuroscience? Check. Industrial/organizational cognitive neuroscience? Amazingly, no; until just now, that phrase did not exist on the internet. But by the time you read this, Google will probably have a record of this post, which is really all it takes to legitimate I/OCN as a valid field of inquiry. It’s just that easy to create a new scientific discipline, so be very afraid–things are only going to get messier.
  • Cognitive science: A field that, by most accounts, lives up to its name. Well, kind of. Cognitive science sounds like a blanket term for pretty much everything that has to do with cognition, and it sort of is. You have psychology and linguistics and neuroscience and philosophy and artificial intelligence all represented. I’ve never been to the annual CogSci conference, but I hear it’s a veritable orgy of interdisciplinary activity. Still, I think there’s a definite bias towards some fields at the expense of others. Neuroscientists (of any stripe), for instance, rarely call themselves cognitive scientists. Conversely, philosophers of mind or language love to call themselves cognitive scientists, and the jerk cynic in me says it’s because it means they get to call themselves scientists. Also, in terms of content and coverage, there seems to be a definite emphasis among self-professed cognitive scientists on computational and mathematical modeling, and not so much emphasis on developing neuroscience-based models (though neural network models are popular). Still, if you’re scoring terms based on clarity of usage, cognitive science should score at least an 8.5 / 10.
  • Systems neuroscience: The study of neural circuits and the dynamics of information flow in the central nervous system (note: I stole part of that definition from MIT’s BCS website, because MIT people are SMART). Systems neuroscience doesn’t overlap much with psychology; you can’t defensibly argue that the temporal dynamics of neuronal assemblies in sensory cortex have anything to do with human cognition, right? I just threw this in to make things even more confusing.
  • Behavioral neuroscience: This one’s really great, because it has almost nothing to do with what you think it does. Well, okay, it does have something to do with behavior. But it’s almost exclusively animal behavior. People who refer to themselves as behavioral neuroscientists are generally in the business of poking rats in the brain with very small, sharp, glass objects; they typically don’t care much for human beings (professionally, that is). I guess that kind of makes sense when you consider that you can have rats swim and jump and eat and run while electrodes are implanted in their heads, whereas most of the time when we study human brains, they’re sitting motionless in (a) a giant magnet, (b) a chair, or (c) a jar full of formaldehyde. So maybe you could make an argument that since humans don’t get to BEHAVE very much in our studies, people who study humans can’t call themselves behavioral neuroscientists. But that would be a very bad argument to make, and many of the people who work in the so-called “behavioral sciences” and do nothing but study human behavior would probably be waiting to thump you in the hall the next time they saw you.
  • Psychiatry: The branch of medicine that concerns itself with handing out multicolored pills that do funny things to your thoughts and feelings. Of course.

Anyway, the basic point of all this long-winded nonsense is just that, for all that stuff we tell undergraduates about how science is such a wonderful way to achieve clarity about the way the world works, scientists–or at least, neuroscientists and psychologists–tend to carve up their disciplines in pretty insensible ways. That doesn’t mean we’re dumb, of course; to the people who work in a field, the clarity (or lack thereof) of the terminology makes little difference, because you only need to acquire it once (usually in your first nine years of grad school), and after that you always know what people are talking about. Come to think of it, I’m pretty sure the whole point of learning big words is that once you’ve successfully learned them, you can stop thinking deeply about what they actually mean.

It is kind of annoying, though, to have to explain to undergraduates that, DUH, the class they really want to take given their interests is OBVIOUSLY cognitive neuroscience and NOT neuropsychology or biological psychology. I mean, can’t they read? Or to pedantically point out to someone you just met at a party that saying “the neurological mechanisms of such-and-such” makes them sound hopelessly unsophisticated, and what they should really be saying is “the neural mechanisms,” or “the neurobiological mechanisms”, or (for bonus points) “the neurophysiological substrates”. Or, you know, to try (unsuccessfully) to convince your mother on the phone that even though it’s true that you study the relationship between brains and behavior, the field you work in has very little to do with behavioral neuroscience, and so you really aren’t an expert on that new study reported in that article she just read in the paper the other day about that interesting thing that’s relevant to all that stuff we all do all the time.

The point is, the world would be a slightly better place if cognitive science, neuropsychology, and behavioral neuroscience all meant what they seem like they should mean. But only very slightly better.

Anyway, aside from my burning need to complain about trivial things, I bring these ugly terminological matters up partly out of idle curiosity. And what I’m idly curious about is this: does this kind of confusion feature prominently in other disciplines too, or is psychology-slash-neuroscience just, you know, “special”? My intuition is that it’s the latter; subdiscipline names in other areas just seem so sensible to me whenever I hear them. For instance, I’m fairly confident that organic chemists study the chemistry of Orgas, and I assume condensed matter physicists spend their days modeling the dynamics of teapots. Right? Yes? No? Perhaps my  millions thousands hundreds dozens three regular readers can enlighten me in the comments…

does functional specialization exist in the language system?

One of the central questions in cognitive neuroscience–according to some people, at least–is how selective different chunks of cortex are for specific cognitive functions. The paradigmatic examples of functional selectivity are pretty much all located in sensory cortical regions or adjacent association cortices. For instance, the fusiform face area (FFA), is so named because it (allegedly) responds selectively to faces but not to other stimuli. Other regions with varying selectivity profiles are similarly named: the visual word form area (VWFA), parahippocampal place area (PPA), extrastriate body area (EBA), and so on.

In a recent review paper, Fedorenko and Kanwisher (2009) sought to apply insights from the study of functionally selective visual regions to the study of language. They posed the following question with respect to the neuroimaging of language in the title of their paper: Why hasn’t a clearer picture emerged? And they gave the following answer: it’s because brains differ from one another, stupid.

Admittedly, I’m paraphrasing; they don’t use exactly those words. But the basic point they make is that it’s difficult to identify functionally selective regions when you’re averaging over a bunch of very different brains. And the solution they propose–again, imported from the study of visual areas–is to identify potentially selective language regions-of-interest (ROIs) on a subject-specific basis rather than relying on group-level analyses.

The Fedorenko and Kanwisher paper apparently didn’t please Greg Hickok of Talking Brains, who’s done a lot of very elegant work on the neurobiology of language.  A summary of Hickok’s take:

What I found a bit on the irritating side though was the extremely dim and distressingly myopic view of progress in the field of the neural basis of language.

He objects to Fedorenko and Kanwisher on several grounds, and the post is well worth reading. But since I’m very lazy tired, I’ll just summarize his points as follows:

  • There’s more functional specialization in the language system than F&K give the field credit for
  • The use of subject-specific analyses in the domain of language isn’t new, and many researchers (including Hickok) have used procedures similar to those F&K recommend in the past
  • Functional selectivity is not necessarily a criterion we should care about all that much anyway

As you might expect, F&K disagree with Hickok on these points, and Hickok was kind enough to post their response. He then responded to their response in the comments (which are also worth reading), which in turn spawned a back-and-forth with F&K, a cameo by Brad Buchsbaum (who posted his own excellent thoughts on the matter here), and eventually, an intervention by a team of professional arbitrators. Okay, I made that last bit up; it was a very civil disagreement, and is exactly what scientific debates on the internet should look like, in my opinion.

Anyway, rather than revisit the entire thread, which you can read for yourself, I’ll just summarize my thoughts:

  • On the whole, I think my view lines up pretty closely with Hickok’s and Buchsbaum’s. Although I’m very far from an expert on the neurobiology of language (is there a word in English for someone’s who’s the diametric opposite of an expert–i.e., someone who consistently and confidently asserts exactly the wrong thing? Cause that’s what I am), I agree with Hickok’s argument that the temporal poles show a response profile that looks suspiciously like sentence- or narrative-specific processing (I have a paper on the neural mechanisms of narrative comprehension that supports that claim to some extent), and think F&K’s review of the literature is probably not as balanced as it could have been.
  • More generally, I agree with Hickok that demonstrating functional specialization isn’t necessarily that important to the study of language (or most other domains). This seems to be a major point of contention for F&K, but I don’t think they make a very strong case for their view. They suggest that they “are not sure what other goals (besides understanding a region’s computations) could drive studies aimed at understanding how functionally specialized a region is,” which I think is reasonable, but affirms the consequent. Hickok isn’t saying there’s no reason to search for functional specialization in the F&K sense; as I read him, he’s simply saying that you can study the nature of neural computation in lots of interesting ways that don’t require you to demonstrate functional specialization to the degree F&K seem to require. Seems hard to disagree with that.
  • Buchsbaum points out that it’s questionable whether there are any brain regions that meet the criteria F&K set out for functional specialization–namely that “A brain region R is specialized for cognitive function x if this region (i) is engaged in tasks that rely on cognitive function x, and (ii) is not engaged in tasks that do not rely on cognitive function x.Buchsbaum and Hickok both point out that the two examples F&K give of putatively specialized regions (the FFA and the temporo-parietal junction, which some people believe is selectively involved in theory of mind) are hardly uncontroversial. Plenty of people have argued that the FFA isn’t really selective to faces, and even more people have argued that the TPJ isn’t selective to theory of mind. As far as I can tell, F&K don’t really address this issue in the comments. They do refer to a recent paper of Kanwisher’s that discusses the evidence for functional specificity in the FFA, but I’m not sure the argument made in that paper is itself uncontroversial, and in any case, Kanwisher does concede that there’s good evidence for at least some representation of non-preferred stimuli (i.e., non-faces in the FFA). In any case, the central question here is whether or not F&K really unequivocally believe that FFA and TPJ aren’t engaged by any tasks that don’t involve face or theory of mind processing. If not, then it’s unfair to demand or expect the same of regions implicated in language.
  • Although I think there’s a good deal to be said for subject-specific analyses, I’m not as sanguine as F&K that a subject-specific approach offers a remedy to the problems that they perceive afflict the study of the neural mechanisms of language. While there’s no denying that group analyses suffer from a number of limitations, subject-specific analyses have their own weaknesses, which F&K don’t really mention in their paper. One is that such analyses typically require the assumption that two clusters located in slightly different places for different subjects must be carrying out the same cognitive operations if they respond similarly to a localizer task. That’s a very strong assumption for which there’s very little evidence (at least in the language domain)–especially because the localizer task F&K promote in this paper involves a rather strong manipulation that may confound several different aspects of language processing.
    Another problem is that it’s not at all obvious how you determine which regions are the “same” (in their 2010 paper, F&K argue for an algorithmic parcellation approach, but the fact that you get sensible-looking results is no guarantee that your parcellation actually reflects meaningful functional divisions in individual subjects). And yet another is that serious statistical problems can arise in cases where one or more subjects fail to show activation in a putative region (which is generally the norm rather than the exception). Say you have 25 subjects in your sample, and 7 don’t show activation anywhere in a region that can broadly be called Broca’s area. What do you do? You can’t just throw those subjects out of the analysis, because that would grossly and misleadingly inflate your effect sizes. Conversely, you can’t just identify any old region that does activate and lump it in with the regions identified in all the other subjects. This is a very serious problem, but it’s one that group analyses, for all their weaknesses, don’t have to contend with.

Disagreements aside, I think it’s really great to see serious scientific discussion taking place in this type of forum. In principle, this is the kind of debate that should be resolved (or not) in the peer-reviewed literature; in practice, peer review is slow, writing full-blown articles takes time, and journal space is limited. So I think blogs have a really important role to play in scientific communication, and frankly, I envy Hickok and Poeppel for the excellent discussion they consistently manage to stimulate over at Talking Brains!